317 lines
12 KiB
Python
317 lines
12 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for image_dataset."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import shutil
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.compat import v2_compat
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.keras import keras_parameterized
|
|
from tensorflow.python.keras.preprocessing import image as image_preproc
|
|
from tensorflow.python.keras.preprocessing import image_dataset
|
|
from tensorflow.python.platform import test
|
|
|
|
try:
|
|
import PIL # pylint:disable=g-import-not-at-top
|
|
except ImportError:
|
|
PIL = None
|
|
|
|
|
|
class ImageDatasetFromDirectoryTest(keras_parameterized.TestCase):
|
|
|
|
def _get_images(self, count=16, color_mode='rgb'):
|
|
width = height = 24
|
|
imgs = []
|
|
for _ in range(count):
|
|
if color_mode == 'grayscale':
|
|
img = np.random.randint(0, 256, size=(height, width, 1))
|
|
elif color_mode == 'rgba':
|
|
img = np.random.randint(0, 256, size=(height, width, 4))
|
|
else:
|
|
img = np.random.randint(0, 256, size=(height, width, 3))
|
|
img = image_preproc.array_to_img(img)
|
|
imgs.append(img)
|
|
return imgs
|
|
|
|
def _prepare_directory(self,
|
|
num_classes=2,
|
|
grayscale=False,
|
|
nested_dirs=False,
|
|
color_mode='rgb',
|
|
count=16):
|
|
# Get a unique temp directory
|
|
temp_dir = os.path.join(self.get_temp_dir(), str(np.random.randint(1e6)))
|
|
os.mkdir(temp_dir)
|
|
self.addCleanup(shutil.rmtree, temp_dir)
|
|
|
|
# Generate paths to class subdirectories
|
|
paths = []
|
|
for class_index in range(num_classes):
|
|
class_directory = 'class_%s' % (class_index,)
|
|
if nested_dirs:
|
|
class_paths = [
|
|
class_directory, os.path.join(class_directory, 'subfolder_1'),
|
|
os.path.join(class_directory, 'subfolder_2'), os.path.join(
|
|
class_directory, 'subfolder_1', 'sub-subfolder')
|
|
]
|
|
else:
|
|
class_paths = [class_directory]
|
|
for path in class_paths:
|
|
os.mkdir(os.path.join(temp_dir, path))
|
|
paths += class_paths
|
|
|
|
# Save images to the paths
|
|
i = 0
|
|
for img in self._get_images(color_mode=color_mode, count=count):
|
|
path = paths[count % len(paths)]
|
|
if color_mode == 'rgb':
|
|
ext = 'jpg'
|
|
else:
|
|
ext = 'png'
|
|
filename = os.path.join(path, 'image_%s.%s' % (i, ext))
|
|
img.save(os.path.join(temp_dir, filename))
|
|
i += 1
|
|
return temp_dir
|
|
|
|
def test_image_dataset_from_directory_binary(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=2)
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode='int')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 3))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
self.assertEqual(batch[1].shape, (8,))
|
|
self.assertEqual(batch[1].dtype.name, 'int32')
|
|
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode='binary')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 3))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
self.assertEqual(batch[1].shape, (8, 1))
|
|
self.assertEqual(batch[1].dtype.name, 'float32')
|
|
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode='categorical')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 3))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
self.assertEqual(batch[1].shape, (8, 2))
|
|
self.assertEqual(batch[1].dtype.name, 'float32')
|
|
|
|
def test_static_shape_in_graph(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=2)
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode='int')
|
|
test_case = self
|
|
|
|
@def_function.function
|
|
def symbolic_fn(ds):
|
|
for x, _ in ds.take(1):
|
|
test_case.assertListEqual(x.shape.as_list(), [None, 18, 18, 3])
|
|
|
|
symbolic_fn(dataset)
|
|
|
|
def test_sample_count(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=4, count=15)
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode=None)
|
|
sample_count = 0
|
|
for batch in dataset:
|
|
sample_count += batch.shape[0]
|
|
self.assertEqual(sample_count, 15)
|
|
|
|
def test_image_dataset_from_directory_multiclass(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=4, count=15)
|
|
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode=None)
|
|
batch = next(iter(dataset))
|
|
self.assertEqual(batch.shape, (8, 18, 18, 3))
|
|
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode=None)
|
|
sample_count = 0
|
|
iterator = iter(dataset)
|
|
for batch in dataset:
|
|
sample_count += next(iterator).shape[0]
|
|
self.assertEqual(sample_count, 15)
|
|
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode='int')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 3))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
self.assertEqual(batch[1].shape, (8,))
|
|
self.assertEqual(batch[1].dtype.name, 'int32')
|
|
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode='categorical')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 3))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
self.assertEqual(batch[1].shape, (8, 4))
|
|
self.assertEqual(batch[1].dtype.name, 'float32')
|
|
|
|
def test_image_dataset_from_directory_color_modes(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=4, color_mode='rgba')
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), color_mode='rgba')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 4))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
|
|
directory = self._prepare_directory(num_classes=4, color_mode='grayscale')
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), color_mode='grayscale')
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 1))
|
|
self.assertEqual(batch[0].dtype.name, 'float32')
|
|
|
|
def test_image_dataset_from_directory_validation_split(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=2, count=10)
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=10, image_size=(18, 18),
|
|
validation_split=0.2, subset='training', seed=1337)
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (8, 18, 18, 3))
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=10, image_size=(18, 18),
|
|
validation_split=0.2, subset='validation', seed=1337)
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertEqual(batch[0].shape, (2, 18, 18, 3))
|
|
|
|
def test_image_dataset_from_directory_manual_labels(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=2, count=2)
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18),
|
|
labels=[0, 1], shuffle=False)
|
|
batch = next(iter(dataset))
|
|
self.assertLen(batch, 2)
|
|
self.assertAllClose(batch[1], [0, 1])
|
|
|
|
def test_image_dataset_from_directory_follow_links(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=2, count=25,
|
|
nested_dirs=True)
|
|
dataset = image_dataset.image_dataset_from_directory(
|
|
directory, batch_size=8, image_size=(18, 18), label_mode=None,
|
|
follow_links=True)
|
|
sample_count = 0
|
|
for batch in dataset:
|
|
sample_count += batch.shape[0]
|
|
self.assertEqual(sample_count, 25)
|
|
|
|
def test_image_dataset_from_directory_errors(self):
|
|
if PIL is None:
|
|
return # Skip test if PIL is not available.
|
|
|
|
directory = self._prepare_directory(num_classes=3, count=5)
|
|
|
|
with self.assertRaisesRegex(ValueError, '`labels` argument should be'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, labels=None)
|
|
|
|
with self.assertRaisesRegex(ValueError, '`label_mode` argument must be'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, label_mode='other')
|
|
|
|
with self.assertRaisesRegex(ValueError, '`color_mode` must be one of'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, color_mode='other')
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, 'only pass `class_names` if the labels are inferred'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, labels=[0, 0, 1, 1, 1],
|
|
class_names=['class_0', 'class_1', 'class_2'])
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
'Expected the lengths of `labels` to match the number of files'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, labels=[0, 0, 1, 1])
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, '`class_names` passed did not match'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, class_names=['class_0', 'class_2'])
|
|
|
|
with self.assertRaisesRegex(ValueError, 'there must exactly 2 classes'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, label_mode='binary')
|
|
|
|
with self.assertRaisesRegex(ValueError,
|
|
'`validation_split` must be between 0 and 1'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, validation_split=2)
|
|
|
|
with self.assertRaisesRegex(ValueError,
|
|
'`subset` must be either "training" or'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, validation_split=0.2, subset='other')
|
|
|
|
with self.assertRaisesRegex(ValueError, '`validation_split` must be set'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, validation_split=0, subset='training')
|
|
|
|
with self.assertRaisesRegex(ValueError, 'must provide a `seed`'):
|
|
_ = image_dataset.image_dataset_from_directory(
|
|
directory, validation_split=0.2, subset='training')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
v2_compat.enable_v2_behavior()
|
|
test.main()
|