STT-tensorflow/tensorflow/python/keras/optimizer_v2/adamax_test.py
Scott Zhu ab3601d340 Remove the usage of eager context in test code, and replace them with test combinations.
PiperOrigin-RevId: 329947449
Change-Id: Ie513d6547c6ba458515be31e4df84976893cfd3d
2020-09-03 11:05:50 -07:00

378 lines
16 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Adamax."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.keras import combinations
from tensorflow.python.keras.optimizer_v2 import adamax
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def adamax_update_numpy(param,
g_t,
t,
m,
v,
alpha=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8):
m_t = beta1 * m + (1 - beta1) * g_t
v_t = np.maximum(beta2 * v, np.abs(g_t))
param_t = param - (alpha / (1 - beta1**(t + 1))) * (m_t / (v_t + epsilon))
return param_t, m_t, v_t
def adamax_sparse_update_numpy(param,
indices,
g_t,
t,
m,
v,
alpha=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8):
m_t, v_t, param_t = np.copy(m), np.copy(v), np.copy(param)
m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t
v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t))
param_t_slice = param[indices] - (
(alpha / (1 - beta1**(t + 1))) * (m_t_slice / (v_t_slice + epsilon)))
m_t[indices] = m_t_slice
v_t[indices] = v_t_slice
param_t[indices] = param_t_slice
return param_t, m_t, v_t
def get_beta_accumulators(opt, dtype):
local_step = math_ops.cast(opt.iterations + 1, dtype)
beta_1_t = math_ops.cast(opt._get_hyper("beta_1"), dtype)
beta_1_power = math_ops.pow(beta_1_t, local_step)
return beta_1_power
class AdamaxOptimizerTest(test.TestCase, parameterized.TestCase):
def testResourceSparse(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with ops.Graph().as_default(), self.cached_session(use_gpu=True):
# Initialize variables for numpy implementation.
zero_slots = lambda: np.zeros((3), dtype=dtype.as_numpy_dtype) # pylint: disable=cell-var-from-loop
m0, v0, m1, v1 = zero_slots(), zero_slots(), zero_slots(), zero_slots()
var0_np = np.array([1.0, 2.0, 3.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([4.0, 5.0, 6.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
grads0_np_indices = np.array([0, 1], dtype=np.int32)
grads0 = ops.IndexedSlices(
constant_op.constant(grads0_np),
constant_op.constant(grads0_np_indices), constant_op.constant([3]))
grads1_np_indices = np.array([2, 1], dtype=np.int32)
grads1 = ops.IndexedSlices(
constant_op.constant(grads1_np),
constant_op.constant(grads1_np_indices), constant_op.constant([3]))
opt = adamax.Adamax()
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0, 3.0], var0)
self.assertAllClose([4.0, 5.0, 6.0], var1)
beta1_power = get_beta_accumulators(opt, dtype)
# Run 3 steps of Adamax
for t in range(3):
self.assertAllCloseAccordingToType(0.9**(t + 1), beta1_power)
update.run()
var0_np, m0, v0 = adamax_sparse_update_numpy(
var0_np, grads0_np_indices, grads0_np, t, m0, v0)
var1_np, m1, v1 = adamax_sparse_update_numpy(
var1_np, grads1_np_indices, grads1_np, t, m1, v1)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, var0)
self.assertAllCloseAccordingToType(var1_np, var1)
def testSparseDevicePlacement(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for index_dtype in [dtypes.int32, dtypes.int64]:
with ops.Graph().as_default(), self.cached_session(
force_gpu=test.is_gpu_available()):
# If a GPU is available, tests that all optimizer ops can be placed on
# it (i.e. they have GPU kernels).
var = variables.Variable([[1.0], [2.0]])
indices = constant_op.constant([0, 1], dtype=index_dtype)
g_sum = lambda: math_ops.reduce_sum(array_ops.gather(var, indices)) # pylint: disable=cell-var-from-loop
optimizer = adamax.Adamax(3.0)
minimize_op = optimizer.minimize(g_sum, var_list=[var])
self.evaluate(variables.global_variables_initializer())
minimize_op.run()
def testSparseRepeatedIndices(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with ops.Graph().as_default(), self.cached_session():
repeated_index_update_var = variables.Variable(
[[1.0], [2.0]], dtype=dtype)
aggregated_update_var = variables.Variable(
[[1.0], [2.0]], dtype=dtype)
grad_repeated_index = ops.IndexedSlices(
constant_op.constant(
[0.1, 0.1], shape=[2, 1], dtype=dtype),
constant_op.constant([1, 1]),
constant_op.constant([2, 1]))
grad_aggregated = ops.IndexedSlices(
constant_op.constant(
[0.2], shape=[1, 1], dtype=dtype),
constant_op.constant([1]),
constant_op.constant([2, 1]))
repeated_update = adamax.Adamax().apply_gradients(
[(grad_repeated_index, repeated_index_update_var)])
aggregated_update = adamax.Adamax().apply_gradients(
[(grad_aggregated, aggregated_update_var)])
self.evaluate(variables.global_variables_initializer())
self.assertAllClose(aggregated_update_var,
repeated_index_update_var.eval())
for _ in range(3):
repeated_update.run()
aggregated_update.run()
self.assertAllClose(aggregated_update_var,
repeated_index_update_var.eval())
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testBasic(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
with self.session(graph=ops.Graph(), use_gpu=True):
# Initialize variables for numpy implementation.
m0 = np.array([0.0, 0.0])
v0 = np.array([0.0, 0.0])
m1 = np.array([0.0, 0.0])
v1 = np.array([0.0, 0.0])
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np, name="var0_%d" % i)
var1 = variables.Variable(var1_np, name="var1_%d" % i)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
opt = adamax.Adamax()
if not context.executing_eagerly():
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
if not context.executing_eagerly():
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 3 steps of Adamax
for t in range(3):
beta_1_power = get_beta_accumulators(opt, dtype)
self.assertAllCloseAccordingToType(0.9**(t + 1),
self.evaluate(beta_1_power))
if not context.executing_eagerly():
self.evaluate(update)
else:
opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0)
var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1)
# Validate updated params
self.assertAllCloseAccordingToType(
var0_np, self.evaluate(var0), rtol=1e-2)
self.assertAllCloseAccordingToType(
var1_np, self.evaluate(var1), rtol=1e-2)
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testBasicWithLearningRateDecay(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
with self.session(graph=ops.Graph(), use_gpu=True):
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np, name="var0_%d" % i)
var1 = variables.Variable(var1_np, name="var1_%d" % i)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
learning_rate = 0.001
decay = 0.002
opt = adamax.Adamax(learning_rate=learning_rate, decay=decay)
if not context.executing_eagerly():
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
if not context.executing_eagerly():
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 3 steps of Adamax
for t in range(3):
beta_1_power = get_beta_accumulators(opt, dtype)
self.assertAllCloseAccordingToType(0.9**(t + 1),
self.evaluate(beta_1_power))
if not context.executing_eagerly():
self.evaluate(update)
else:
opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
lr = learning_rate / (1 + decay * t)
var0_np, m0, v0 = adamax_update_numpy(
var0_np, grads0_np, t, m0, v0, alpha=lr)
var1_np, m1, v1 = adamax_update_numpy(
var1_np, grads1_np, t, m1, v1, alpha=lr)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0),
rtol=1e-2)
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1),
rtol=1e-2)
def testTensorLearningRate(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with ops.Graph().as_default(), self.cached_session(use_gpu=True):
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
opt = adamax.Adamax(constant_op.constant(0.001))
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], var0)
self.assertAllClose([3.0, 4.0], var1)
beta1_power = get_beta_accumulators(opt, dtype)
# Run 3 steps of Adamax
for t in range(3):
self.assertAllCloseAccordingToType(0.9**(t + 1), beta1_power)
update.run()
var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0)
var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, var0)
self.assertAllCloseAccordingToType(var1_np, var1)
def testSharing(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with ops.Graph().as_default(), self.cached_session(use_gpu=True):
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
opt = adamax.Adamax()
update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
beta1_power = get_beta_accumulators(opt, dtype)
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], var0)
self.assertAllClose([3.0, 4.0], var1)
# Run 3 steps of intertwined Adamax1 and Adamax2.
for t in range(3):
self.assertAllCloseAccordingToType(0.9**(t + 1), beta1_power)
if t % 2 == 0:
update1.run()
else:
update2.run()
var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0)
var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, var0)
self.assertAllCloseAccordingToType(var1_np, var1)
@combinations.generate(combinations.combine(mode=["eager"]))
def testSlotsUniqueEager(self):
v1 = variables.Variable(1.)
v2 = variables.Variable(1.)
opt = adamax.Adamax(1.)
opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
# There should be iteration, and two unique slot variables for v1 and v2.
self.assertLen({id(v) for v in opt.variables()}, 5)
def testConstructAdamaxWithLR(self):
opt = adamax.Adamax(lr=1.0)
opt_2 = adamax.Adamax(learning_rate=0.1, lr=1.0)
opt_3 = adamax.Adamax(learning_rate=0.1)
self.assertIsInstance(opt.lr, variables.Variable)
self.assertIsInstance(opt_2.lr, variables.Variable)
self.assertIsInstance(opt_3.lr, variables.Variable)
self.evaluate(variables.global_variables_initializer())
self.assertAllClose(self.evaluate(opt.lr), (1.0))
self.assertAllClose(self.evaluate(opt_2.lr), (1.0))
self.assertAllClose(self.evaluate(opt_3.lr), (0.1))
if __name__ == "__main__":
test.main()