STT-tensorflow/tensorflow/python/keras/optimizer_v2/adadelta_test.py
Scott Zhu ab3601d340 Remove the usage of eager context in test code, and replace them with test combinations.
PiperOrigin-RevId: 329947449
Change-Id: Ie513d6547c6ba458515be31e4df84976893cfd3d
2020-09-03 11:05:50 -07:00

199 lines
7.9 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Adadelta Optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras import combinations
from tensorflow.python.keras.optimizer_v2 import adadelta
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
_DATA_TYPES = [dtypes.half, dtypes.float32, dtypes.float64]
# TODO(b/143684500): Eigen to support complex sqrt
if not test_util.IsBuiltWithNvcc():
_DATA_TYPES += [dtypes.complex64, dtypes.complex128]
class AdadeltaOptimizerTest(test.TestCase, parameterized.TestCase):
def doTestBasic(self, use_resource=False, use_callable_params=False):
num_updates = 4 # number of ADADELTA steps to perform
for dtype in _DATA_TYPES:
for grad in [0.2, 0.1, 0.01]:
for lr in [1.0, 0.5, 0.1]:
var0_init = [1.0, 2.0]
var1_init = [3.0, 4.0]
if use_resource:
var0 = variables.Variable(var0_init, dtype=dtype)
var1 = variables.Variable(var1_init, dtype=dtype)
else:
var0 = variables.Variable(var0_init, dtype=dtype)
var1 = variables.Variable(var1_init, dtype=dtype)
grads = constant_op.constant([grad, grad], dtype=dtype)
accum = 0.0
accum_update = 0.0
# ADADELTA gradient optimizer
rho = 0.95
epsilon = 1e-8
if use_callable_params:
adadelta_opt = adadelta.Adadelta(
learning_rate=lambda: lr, # pylint: disable=cell-var-from-loop
rho=lambda: rho, # pylint: disable=cell-var-from-loop
epsilon=epsilon) # pylint: disable=cell-var-from-loop
else:
adadelta_opt = adadelta.Adadelta(
learning_rate=lr, rho=rho, epsilon=epsilon)
if not context.executing_eagerly():
adadelta_update = adadelta_opt.apply_gradients(
zip([grads, grads], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
# Assign slots
slot = [None] * 2
slot_update = [None] * 2
slot[0] = adadelta_opt.get_slot(var0, "accum_grad")
self.assertEqual(slot[0].shape, var0.shape)
slot_update[0] = adadelta_opt.get_slot(var0, "accum_var")
self.assertEqual(slot_update[0].shape, var0.shape)
slot[1] = adadelta_opt.get_slot(var1, "accum_grad")
self.assertEqual(slot[1].shape, var1.shape)
slot_update[1] = adadelta_opt.get_slot(var1, "accum_var")
self.assertEqual(slot_update[1].shape, var1.shape)
# Fetch params to validate initial values
self.assertAllClose(var0_init, self.evaluate(var0))
self.assertAllClose(var1_init, self.evaluate(var1))
update = [None] * num_updates
tot_update = 0
for step in range(num_updates):
# Run adadelta update for comparison
if not context.executing_eagerly():
self.evaluate(adadelta_update)
else:
adadelta_opt.apply_gradients(zip([grads, grads], [var0, var1]))
# Perform initial update without previous accum values
accum = accum * rho + (grad**2) * (1 - rho)
update[step] = (
np.sqrt(accum_update + epsilon) *
(1. / np.sqrt(accum + epsilon)) * grad)
accum_update = (
accum_update * rho + (update[step]**2) * (1.0 - rho))
tot_update += update[step] * lr
if not context.executing_eagerly():
# Check that the accumulators have been updated
# TODO(lxuechen): This is hard to test in eager mode
for slot_idx in range(2):
self.assertAllCloseAccordingToType(
np.array([accum, accum], dtype=dtype.as_numpy_dtype(0)),
self.evaluate(slot[slot_idx]),
rtol=1e-5)
self.assertAllCloseAccordingToType(
np.array(
[accum_update, accum_update],
dtype=dtype.as_numpy_dtype(0)),
self.evaluate(slot_update[slot_idx]),
rtol=1e-5)
# Check that the parameters have been updated
self.assertAllCloseAccordingToType(
np.array(
[var0_init[0] - tot_update, var0_init[1] - tot_update],
dtype=dtype.as_numpy_dtype(0)),
self.evaluate(var0),
rtol=1e-5)
self.assertAllCloseAccordingToType(
np.array(
[var1_init[0] - tot_update, var1_init[1] - tot_update],
dtype=dtype.as_numpy_dtype(0)),
self.evaluate(var1),
rtol=1e-5)
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testResourceBasic(self):
self.doTestBasic(use_resource=True)
@combinations.generate(combinations.combine(mode=["eager"]))
def testBasicCallableParams(self):
self.doTestBasic(use_resource=True, use_callable_params=True)
def testMinimizeSparseResourceVariable(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with ops.Graph().as_default():
for dtype in _DATA_TYPES:
var0 = variables.Variable([[1.0, 2.0]], dtype=dtype)
x = constant_op.constant([[4.0], [5.0]], dtype=dtype)
def loss():
pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) # pylint: disable=cell-var-from-loop
return pred * pred
sgd_op = adadelta.Adadelta(1.0, 1.0, 1.0).minimize(
loss, var_list=[var0])
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0))
# Run 1 step of sgd
self.evaluate(sgd_op)
# Validate updated params
self.assertAllCloseAccordingToType([[-111, -138]], self.evaluate(var0))
def testConstructAdadeltaWithLR(self):
opt = adadelta.Adadelta(lr=1.0, rho=0.9, epsilon=1.)
opt_2 = adadelta.Adadelta(learning_rate=0.1, rho=0.9, epsilon=1., lr=1.0)
opt_3 = adadelta.Adadelta(learning_rate=0.1, rho=0.9, epsilon=1.)
self.assertIsInstance(opt.lr, variables.Variable)
self.assertIsInstance(opt_2.lr, variables.Variable)
self.assertIsInstance(opt_3.lr, variables.Variable)
self.evaluate(variables.global_variables_initializer())
self.assertAllClose(self.evaluate(opt.lr), (1.0))
self.assertAllClose(self.evaluate(opt_2.lr), (1.0))
self.assertAllClose(self.evaluate(opt_3.lr), (0.1))
def testConstructAdadeltaWithEpsilonValues(self):
opt = adadelta.Adadelta(epsilon=None)
self.assertEqual(opt.epsilon, 1e-7)
opt = adadelta.Adadelta(epsilon=1e-8)
self.assertEqual(opt.epsilon, 1e-8)
if __name__ == "__main__":
test.main()