Logits are now cached on the post-activation Tensors and used whenever available. This allows logits to be used in eager mode as well as in the middle of a tf.function, whereas previously they were only able to be used in the middle of a tf.function. The only time this mechanism will not work (and the fallback, existing mechanism will be used) is when the activation and the loss function are separated by a tf.function boundary. Also fixes Loss class to only autograph the loss function when in eager mode. This allows Python control flow to work correctly in the loss function. PiperOrigin-RevId: 333367543 Change-Id: I64454b9acb6a77247122d72e1302aa5110415d57
1731 lines
72 KiB
Python
1731 lines
72 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Keras loss functions."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.python.autograph.impl import api as autograph
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.keras import activations
|
|
from tensorflow.python.keras import backend
|
|
from tensorflow.python.keras import combinations
|
|
from tensorflow.python.keras import losses
|
|
from tensorflow.python.keras.utils import losses_utils
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
ALL_LOSSES = [
|
|
losses.mean_squared_error, losses.mean_absolute_error,
|
|
losses.mean_absolute_percentage_error,
|
|
losses.mean_squared_logarithmic_error, losses.squared_hinge, losses.hinge,
|
|
losses.categorical_crossentropy, losses.binary_crossentropy,
|
|
losses.kl_divergence, losses.poisson,
|
|
losses.cosine_similarity, losses.log_cosh, losses.categorical_hinge
|
|
]
|
|
|
|
|
|
class KerasLossesTest(test.TestCase, parameterized.TestCase):
|
|
|
|
def test_objective_shapes_3d(self):
|
|
with self.cached_session():
|
|
y_a = backend.variable(np.random.random((5, 6, 7)))
|
|
y_b = backend.variable(np.random.random((5, 6, 7)))
|
|
for obj in ALL_LOSSES:
|
|
objective_output = obj(y_a, y_b)
|
|
self.assertListEqual(objective_output.shape.as_list(), [5, 6])
|
|
|
|
def test_objective_shapes_2d(self):
|
|
with self.cached_session():
|
|
y_a = backend.variable(np.random.random((6, 7)))
|
|
y_b = backend.variable(np.random.random((6, 7)))
|
|
for obj in ALL_LOSSES:
|
|
objective_output = obj(y_a, y_b)
|
|
self.assertListEqual(objective_output.shape.as_list(), [
|
|
6,
|
|
])
|
|
|
|
def test_cce_one_hot(self):
|
|
with self.cached_session():
|
|
y_a = backend.variable(np.random.randint(0, 7, (5, 6)))
|
|
y_b = backend.variable(np.random.random((5, 6, 7)))
|
|
objective_output = losses.sparse_categorical_crossentropy(y_a, y_b)
|
|
assert backend.eval(objective_output).shape == (5, 6)
|
|
|
|
y_a = backend.variable(np.random.randint(0, 7, (6,)))
|
|
y_b = backend.variable(np.random.random((6, 7)))
|
|
objective_output = losses.sparse_categorical_crossentropy(y_a, y_b)
|
|
assert backend.eval(objective_output).shape == (6,)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_categorical_crossentropy_loss(self):
|
|
target = backend.variable(np.random.randint(0, 1, (5, 1)))
|
|
logits = backend.variable(np.random.random((5, 1)))
|
|
softmax_output = backend.softmax(logits)
|
|
output_from_logit = losses.categorical_crossentropy(
|
|
target, logits, from_logits=True)
|
|
output_from_softmax = losses.categorical_crossentropy(
|
|
target, softmax_output)
|
|
np.testing.assert_allclose(
|
|
backend.eval(output_from_logit),
|
|
backend.eval(output_from_softmax),
|
|
atol=1e-5)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_categorical_crossentropy_loss_with_unknown_rank_tensor(self):
|
|
t = backend.placeholder()
|
|
p = backend.placeholder()
|
|
o = losses.categorical_crossentropy(t, p)
|
|
|
|
t_val = ops.convert_to_tensor_v2_with_dispatch([[1., 0., 0.], [0., 1., 0.],
|
|
[0., 0., 1.]])
|
|
p_val = ops.convert_to_tensor_v2_with_dispatch([[.9, .05, .05],
|
|
[.05, .89, .06],
|
|
[.05, .01, .94]])
|
|
f = backend.function([t, p], o)
|
|
|
|
result = f([t_val, p_val])
|
|
self.assertArrayNear(result, [.105, .116, .062], 1e-3)
|
|
|
|
# from logits
|
|
p_val = ops.convert_to_tensor_v2_with_dispatch([[8., 1., 1.], [0., 9., 1.],
|
|
[2., 3., 5.]])
|
|
o = losses.categorical_crossentropy(t, p, from_logits=True)
|
|
f = backend.function([t, p], o)
|
|
|
|
result = f([t_val, p_val])
|
|
self.assertArrayNear(result, [.002, 0, .17], 1e-3)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_sparse_categorical_crossentropy_loss(self):
|
|
target = backend.variable(np.random.randint(0, 1, (5, 1)))
|
|
logits = backend.variable(np.random.random((5, 1)))
|
|
softmax_output = backend.softmax(logits)
|
|
output_from_logit = losses.sparse_categorical_crossentropy(
|
|
target, logits, from_logits=True)
|
|
output_from_softmax = losses.sparse_categorical_crossentropy(
|
|
target, softmax_output)
|
|
np.testing.assert_allclose(
|
|
backend.eval(output_from_logit),
|
|
backend.eval(output_from_softmax),
|
|
atol=1e-5)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph']))
|
|
def test_sparse_categorical_crossentropy_loss_with_unknown_rank_tensor(self):
|
|
# This test only runs in graph because the TF op layer is not supported yet
|
|
# for sparse ops.
|
|
t = backend.placeholder()
|
|
p = backend.placeholder()
|
|
o = losses.sparse_categorical_crossentropy(t, p)
|
|
|
|
t_val = ops.convert_to_tensor_v2_with_dispatch([0, 1, 2])
|
|
p_val = ops.convert_to_tensor_v2_with_dispatch([[.9, .05, .05],
|
|
[.05, .89, .06],
|
|
[.05, .01, .94]])
|
|
f = backend.function([t, p], o)
|
|
|
|
result = f([t_val, p_val])
|
|
self.assertArrayNear(result, [.105, .116, .062], 1e-3)
|
|
|
|
# from logits
|
|
p_val = ops.convert_to_tensor_v2_with_dispatch([[8., 1., 1.], [0., 9., 1.],
|
|
[2., 3., 5.]])
|
|
o = losses.sparse_categorical_crossentropy(t, p, from_logits=True)
|
|
f = backend.function([t, p], o)
|
|
|
|
result = f([t_val, p_val])
|
|
self.assertArrayNear(result, [.002, 0, .17], 1e-3)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_binary_crossentropy_loss(self):
|
|
target = backend.variable(np.random.randint(0, 1, (5, 1)))
|
|
logits = backend.variable(np.random.random((5, 1)))
|
|
sigmoid_output = backend.sigmoid(logits)
|
|
output_from_logit = losses.binary_crossentropy(
|
|
target, logits, from_logits=True)
|
|
output_from_sigmoid = losses.binary_crossentropy(target, sigmoid_output)
|
|
np.testing.assert_allclose(
|
|
backend.eval(output_from_logit),
|
|
backend.eval(output_from_sigmoid),
|
|
atol=1e-5)
|
|
|
|
def test_get_bce(self):
|
|
bce_fn = losses.get('bce')
|
|
self.assertEqual(bce_fn, losses.binary_crossentropy)
|
|
|
|
def test_serialization(self):
|
|
fn = losses.get('mse')
|
|
config = losses.serialize(fn)
|
|
new_fn = losses.deserialize(config)
|
|
self.assertEqual(fn, new_fn)
|
|
|
|
def test_categorical_hinge(self):
|
|
y_pred = backend.variable(np.array([[0.3, 0.2, 0.1], [0.1, 0.2, 0.7]]))
|
|
y_true = backend.variable(np.array([[0, 1, 0], [1, 0, 0]]))
|
|
expected_loss = ((0.3 - 0.2 + 1) + (0.7 - 0.1 + 1)) / 2.0
|
|
loss = backend.eval(losses.categorical_hinge(y_true, y_pred))
|
|
self.assertAllClose(expected_loss, np.mean(loss))
|
|
|
|
def test_loss_wrapper(self):
|
|
loss_fn = losses.get('mse')
|
|
mse_obj = losses.LossFunctionWrapper(loss_fn, name=loss_fn.__name__)
|
|
|
|
self.assertEqual(mse_obj.name, 'mean_squared_error')
|
|
self.assertEqual(mse_obj.reduction, losses_utils.ReductionV2.AUTO)
|
|
|
|
y_true = constant_op.constant([[1., 9.], [2., 5.]])
|
|
y_pred = constant_op.constant([[4., 8.], [12., 3.]])
|
|
sample_weight = constant_op.constant([1.2, 0.5])
|
|
loss = mse_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
|
|
# mse = [((4 - 1)^2 + (8 - 9)^2) / 2, ((12 - 2)^2 + (3 - 5)^2) / 2]
|
|
# mse = [5, 52]
|
|
# weighted_mse = [5 * 1.2, 52 * 0.5] = [6, 26]
|
|
# reduced_weighted_mse = (6 + 26) / 2 =
|
|
self.assertAllClose(self.evaluate(loss), 16, 1e-2)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_loss_wrapper_autograph(self):
|
|
# Test that functions with control flow wrapped in a LossFunctionWrapper
|
|
# get autographed when in a tf.function
|
|
def loss_fn(y_true, y_pred):
|
|
mse_loss_fn = losses.get('mse')
|
|
if math_ops.reduce_mean(y_true) > 0:
|
|
return mse_loss_fn(y_true, y_pred)
|
|
else:
|
|
return mse_loss_fn(y_true, y_pred)
|
|
|
|
mse_obj = losses.LossFunctionWrapper(loss_fn)
|
|
|
|
y_true = constant_op.constant([[1., 9.], [2., 5.]])
|
|
y_pred = constant_op.constant([[4., 8.], [12., 3.]])
|
|
sample_weight = constant_op.constant([1.2, 0.5])
|
|
|
|
@def_function.function
|
|
def tf_functioned_loss_fn(y_true, y_pred, sample_weight=None):
|
|
return mse_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
|
|
loss = tf_functioned_loss_fn(y_true, y_pred, sample_weight=sample_weight)
|
|
|
|
# mse = [((4 - 1)^2 + (8 - 9)^2) / 2, ((12 - 2)^2 + (3 - 5)^2) / 2]
|
|
# mse = [5, 52]
|
|
# weighted_mse = [5 * 1.2, 52 * 0.5] = [6, 26]
|
|
# reduced_weighted_mse = (6 + 26) / 2 =
|
|
self.assertAllClose(self.evaluate(loss), 16, 1e-2)
|
|
|
|
def test_invalid_reduction(self):
|
|
with self.assertRaisesRegex(ValueError, 'Invalid Reduction Key Foo.'):
|
|
losses.MeanSquaredError(reduction='Foo')
|
|
|
|
mse_obj = losses.MeanSquaredError()
|
|
y = constant_op.constant([1])
|
|
mse_obj.reduction = 'Bar'
|
|
with self.assertRaisesRegex(ValueError, 'Invalid Reduction Key Bar.'):
|
|
mse_obj(y, y)
|
|
|
|
def test_deserialization_error(self):
|
|
with self.assertRaisesRegex(ValueError, 'Could not interpret loss'):
|
|
losses.get(0)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_binary_crossentropy_uses_cached_logits(self):
|
|
logits = constant_op.constant([[-30., 30.]])
|
|
y_pred = activations.sigmoid(logits)
|
|
self.assertTrue(hasattr(y_pred, '_keras_logits'))
|
|
y_true = constant_op.constant([[0., 1.]])
|
|
loss = losses.binary_crossentropy(y_true, y_pred)[0]
|
|
# Check that logits are used. If y_pred is used directly, loss will
|
|
# collapse to 0 from underflow.
|
|
self.assertNotEqual(self.evaluate(loss), 0.)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_categorical_crossentropy_uses_cached_logits(self):
|
|
logits = constant_op.constant([[-5., 0., 5.]])
|
|
y_pred = activations.softmax(logits)
|
|
self.assertTrue(hasattr(y_pred, '_keras_logits'))
|
|
y_true = constant_op.constant([[0., 0., 1.]])
|
|
loss = losses.categorical_crossentropy(y_true, logits, from_logits=True)[0]
|
|
# Check that logits are used. If y_pred is used directly, loss will
|
|
# collapse to 0 from underflow.
|
|
self.assertNotEqual(self.evaluate(loss), 0.)
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
def test_sparse_categorical_crossentropy_uses_cached_logits(self):
|
|
logits = constant_op.constant([[-5., 0., 5.]])
|
|
y_pred = activations.softmax(logits)
|
|
self.assertTrue(hasattr(y_pred, '_keras_logits'))
|
|
y_true = constant_op.constant([2])
|
|
loss = losses.sparse_categorical_crossentropy(
|
|
y_true, logits, from_logits=True)[0]
|
|
# Check that logits are used. If y_pred is used directly, loss will
|
|
# collapse to 0 from underflow.
|
|
self.assertNotEqual(self.evaluate(loss), 0.)
|
|
|
|
@combinations.generate(combinations.combine(mode=['eager']))
|
|
def test_loss_not_autographed_in_eager(self):
|
|
|
|
class MyLoss(losses.Loss):
|
|
|
|
def call(self, y_true, y_pred):
|
|
return y_true - y_pred
|
|
|
|
loss = MyLoss()
|
|
y_true = constant_op.constant([[0., 0., 0.]])
|
|
y_pred = constant_op.constant([[1., 1., 1.]])
|
|
|
|
def tf_convert(fn, _):
|
|
assert False, 'Function should not be autographed.'
|
|
return fn
|
|
|
|
with test.mock.patch.object(autograph, 'tf_convert', tf_convert):
|
|
loss(y_true, y_pred)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class MeanSquaredErrorTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
mse_obj = losses.MeanSquaredError(
|
|
reduction=losses_utils.ReductionV2.SUM, name='mse_1')
|
|
self.assertEqual(mse_obj.name, 'mse_1')
|
|
self.assertEqual(mse_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct_unweighted(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([4, 8, 12, 8, 1, 3], shape=(2, 3))
|
|
loss = mse_obj(y_true, y_true)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mse_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), 49.5, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mse_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 113.85, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = mse_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 767.8 / 6, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3, 1),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
|
|
loss = mse_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 587 / 6, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mse_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_invalid_sample_weight(self):
|
|
mse_obj = losses.MeanSquaredError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1))
|
|
sample_weight = constant_op.constant([3, 6, 5, 0], shape=(2, 2))
|
|
with self.assertRaisesRegex((ValueError, errors_impl.InvalidArgumentError),
|
|
(r'Incompatible shapes: \[2,3\] vs. \[2,2\]|'
|
|
'Dimensions must be equal')):
|
|
mse_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
|
|
def test_no_reduction(self):
|
|
mse_obj = losses.MeanSquaredError(reduction=losses_utils.ReductionV2.NONE)
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mse_obj(y_true, y_pred, sample_weight=2.3)
|
|
loss = self.evaluate(loss)
|
|
self.assertArrayNear(loss, [84.3333, 143.3666], 1e-3)
|
|
|
|
def test_sum_reduction(self):
|
|
mse_obj = losses.MeanSquaredError(reduction=losses_utils.ReductionV2.SUM)
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mse_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 227.69998, 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class MeanAbsoluteErrorTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
mae_obj = losses.MeanAbsoluteError(
|
|
reduction=losses_utils.ReductionV2.SUM, name='mae_1')
|
|
self.assertEqual(mae_obj.name, 'mae_1')
|
|
self.assertEqual(mae_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct_unweighted(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([4, 8, 12, 8, 1, 3], shape=(2, 3))
|
|
loss = mae_obj(y_true, y_true)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mae_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), 5.5, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mae_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 12.65, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = mae_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 81.4 / 6, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3, 1),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
|
|
loss = mae_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 83 / 6, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mae_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_invalid_sample_weight(self):
|
|
mae_obj = losses.MeanAbsoluteError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3], shape=(2, 3, 1))
|
|
sample_weight = constant_op.constant([3, 6, 5, 0], shape=(2, 2))
|
|
with self.assertRaisesRegex((ValueError, errors_impl.InvalidArgumentError),
|
|
(r'Incompatible shapes: \[2,3\] vs. \[2,2\]|'
|
|
'Dimensions must be equal')):
|
|
mae_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
|
|
def test_no_reduction(self):
|
|
mae_obj = losses.MeanAbsoluteError(reduction=losses_utils.ReductionV2.NONE)
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mae_obj(y_true, y_pred, sample_weight=2.3)
|
|
loss = self.evaluate(loss)
|
|
self.assertArrayNear(loss, [10.7333, 14.5666], 1e-3)
|
|
|
|
def test_sum_reduction(self):
|
|
mae_obj = losses.MeanAbsoluteError(reduction=losses_utils.ReductionV2.SUM)
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mae_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 25.29999, 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class MeanAbsolutePercentageErrorTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError(
|
|
reduction=losses_utils.ReductionV2.SUM, name='mape_1')
|
|
self.assertEqual(mape_obj.name, 'mape_1')
|
|
self.assertEqual(mape_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct_unweighted(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError()
|
|
y_true = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mape_obj(y_true, y_true)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mape_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), 211.8518, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mape_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 487.259, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = mape_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 422.8888, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3, 1),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
|
|
loss = mape_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 694.4445, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mape_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_no_reduction(self):
|
|
mape_obj = losses.MeanAbsolutePercentageError(
|
|
reduction=losses_utils.ReductionV2.NONE)
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = mape_obj(y_true, y_pred, sample_weight=2.3)
|
|
loss = self.evaluate(loss)
|
|
self.assertArrayNear(loss, [621.8518, 352.6666], 1e-3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class MeanSquaredLogarithmicErrorTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
msle_obj = losses.MeanSquaredLogarithmicError(
|
|
reduction=losses_utils.ReductionV2.SUM, name='mape_1')
|
|
self.assertEqual(msle_obj.name, 'mape_1')
|
|
self.assertEqual(msle_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
msle_obj = losses.MeanSquaredLogarithmicError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = msle_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), 1.4370, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
msle_obj = losses.MeanSquaredLogarithmicError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = msle_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 3.3051, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
msle_obj = losses.MeanSquaredLogarithmicError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = msle_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 3.7856, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
msle_obj = losses.MeanSquaredLogarithmicError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3, 1),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
|
|
loss = msle_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 2.6473, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
msle_obj = losses.MeanSquaredLogarithmicError()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = msle_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class CosineSimilarityTest(test.TestCase):
|
|
|
|
def l2_norm(self, x, axis):
|
|
epsilon = 1e-12
|
|
square_sum = np.sum(np.square(x), axis=axis, keepdims=True)
|
|
x_inv_norm = 1 / np.sqrt(np.maximum(square_sum, epsilon))
|
|
return np.multiply(x, x_inv_norm)
|
|
|
|
def setup(self, axis=1):
|
|
self.np_y_true = np.asarray([[1, 9, 2], [-5, -2, 6]], dtype=np.float32)
|
|
self.np_y_pred = np.asarray([[4, 8, 12], [8, 1, 3]], dtype=np.float32)
|
|
|
|
y_true = self.l2_norm(self.np_y_true, axis)
|
|
y_pred = self.l2_norm(self.np_y_pred, axis)
|
|
self.expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(axis,))
|
|
|
|
self.y_true = constant_op.constant(self.np_y_true)
|
|
self.y_pred = constant_op.constant(self.np_y_pred)
|
|
|
|
def test_config(self):
|
|
cosine_obj = losses.CosineSimilarity(
|
|
axis=2, reduction=losses_utils.ReductionV2.SUM, name='cosine_loss')
|
|
self.assertEqual(cosine_obj.name, 'cosine_loss')
|
|
self.assertEqual(cosine_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
self.setup()
|
|
cosine_obj = losses.CosineSimilarity()
|
|
loss = cosine_obj(self.y_true, self.y_pred)
|
|
expected_loss = -np.mean(self.expected_loss)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
self.setup()
|
|
cosine_obj = losses.CosineSimilarity()
|
|
sample_weight = 2.3
|
|
loss = cosine_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
expected_loss = -np.mean(self.expected_loss * sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
self.setup()
|
|
cosine_obj = losses.CosineSimilarity()
|
|
sample_weight = np.asarray([1.2, 3.4])
|
|
loss = cosine_obj(
|
|
self.y_true,
|
|
self.y_pred,
|
|
sample_weight=constant_op.constant(sample_weight))
|
|
expected_loss = -np.mean(self.expected_loss * sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
self.setup()
|
|
cosine_obj = losses.CosineSimilarity()
|
|
np_y_true = self.np_y_true.reshape((2, 3, 1))
|
|
np_y_pred = self.np_y_pred.reshape((2, 3, 1))
|
|
sample_weight = np.asarray([3, 6, 5, 0, 4, 2]).reshape((2, 3))
|
|
|
|
y_true = self.l2_norm(np_y_true, 2)
|
|
y_pred = self.l2_norm(np_y_pred, 2)
|
|
expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(2,))
|
|
|
|
y_true = constant_op.constant(np_y_true)
|
|
y_pred = constant_op.constant(np_y_pred)
|
|
loss = cosine_obj(
|
|
y_true, y_pred, sample_weight=constant_op.constant(sample_weight))
|
|
|
|
expected_loss = -np.mean(expected_loss * sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
self.setup()
|
|
cosine_obj = losses.CosineSimilarity()
|
|
loss = cosine_obj(self.y_true, self.y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0., 3)
|
|
|
|
def test_axis(self):
|
|
self.setup(axis=1)
|
|
cosine_obj = losses.CosineSimilarity(axis=1)
|
|
loss = cosine_obj(self.y_true, self.y_pred)
|
|
expected_loss = -np.mean(self.expected_loss)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class BinaryCrossentropyTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
bce_obj = losses.BinaryCrossentropy(
|
|
reduction=losses_utils.ReductionV2.SUM, name='bce_1')
|
|
self.assertEqual(bce_obj.name, 'bce_1')
|
|
self.assertEqual(bce_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct_unweighted(self):
|
|
y_true = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]],
|
|
dtype=dtypes.float32)
|
|
bce_obj = losses.BinaryCrossentropy()
|
|
loss = bce_obj(y_true, y_true)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[100.0, -100.0, -100.0],
|
|
[-100.0, 100.0, -100.0],
|
|
[-100.0, -100.0, 100.0]])
|
|
bce_obj = losses.BinaryCrossentropy(from_logits=True)
|
|
loss = bce_obj(y_true, logits)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2])
|
|
y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2])
|
|
bce_obj = losses.BinaryCrossentropy()
|
|
loss = bce_obj(y_true, y_pred)
|
|
|
|
# EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999
|
|
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
|
|
# y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON]
|
|
|
|
# Loss = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON))
|
|
# = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON),
|
|
# -log(Y_MAX + EPSILON), -log(1)]
|
|
# = [0, 15.33, 0, 0]
|
|
# Reduced loss = 15.33 / 4
|
|
|
|
self.assertAlmostEqual(self.evaluate(loss), 3.833, 3)
|
|
|
|
# Test with logits.
|
|
y_true = constant_op.constant([[1, 0, 1], [0, 1, 1]])
|
|
logits = constant_op.constant([[100.0, -100.0, 100.0],
|
|
[100.0, 100.0, -100.0]])
|
|
bce_obj = losses.BinaryCrossentropy(from_logits=True)
|
|
loss = bce_obj(y_true, logits)
|
|
|
|
# Loss = max(x, 0) - x * z + log(1 + exp(-abs(x)))
|
|
# (where x = logits and z = y_true)
|
|
# = [((100 - 100 * 1 + log(1 + exp(-100))) +
|
|
# (0 + 100 * 0 + log(1 + exp(-100))) +
|
|
# (100 - 100 * 1 + log(1 + exp(-100))),
|
|
# ((100 - 100 * 0 + log(1 + exp(-100))) +
|
|
# (100 - 100 * 1 + log(1 + exp(-100))) +
|
|
# (0 + 100 * 1 + log(1 + exp(-100))))]
|
|
# = [(0 + 0 + 0) / 3, 200 / 3]
|
|
# Reduced loss = (0 + 66.666) / 2
|
|
|
|
self.assertAlmostEqual(self.evaluate(loss), 33.333, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
bce_obj = losses.BinaryCrossentropy()
|
|
y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2])
|
|
y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2])
|
|
loss = bce_obj(y_true, y_pred, sample_weight=2.3)
|
|
|
|
# EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999
|
|
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
|
|
# y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON]
|
|
|
|
# Loss = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON))
|
|
# = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON),
|
|
# -log(Y_MAX + EPSILON), -log(1)]
|
|
# = [0, 15.33, 0, 0]
|
|
# Weighted loss = [0, 15.33 * 2.3, 0, 0]
|
|
# Reduced loss = 15.33 * 2.3 / 4
|
|
|
|
self.assertAlmostEqual(self.evaluate(loss), 8.817, 3)
|
|
|
|
# Test with logits.
|
|
y_true = constant_op.constant([[1, 0, 1], [0, 1, 1]])
|
|
logits = constant_op.constant([[100.0, -100.0, 100.0],
|
|
[100.0, 100.0, -100.0]])
|
|
bce_obj = losses.BinaryCrossentropy(from_logits=True)
|
|
loss = bce_obj(y_true, logits, sample_weight=2.3)
|
|
|
|
# Loss = max(x, 0) - x * z + log(1 + exp(-abs(x)))
|
|
# (where x = logits and z = y_true)
|
|
# Loss = [(0 + 0 + 0) / 3, 200 / 3]
|
|
# Weighted loss = [0 * 2.3, 66.666 * 2.3]
|
|
# Reduced loss = (0 + 66.666 * 2.3) / 2
|
|
|
|
self.assertAlmostEqual(self.evaluate(loss), 76.667, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
bce_obj = losses.BinaryCrossentropy()
|
|
y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2])
|
|
y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2])
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = bce_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
|
|
# EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999
|
|
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
|
|
# y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON]
|
|
|
|
# Loss = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON))
|
|
# = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON),
|
|
# -log(Y_MAX + EPSILON), -log(1)]
|
|
# = [0, 15.33, 0, 0]
|
|
# Reduced loss = 15.33 * 1.2 / 4
|
|
|
|
self.assertAlmostEqual(self.evaluate(loss), 4.6, 3)
|
|
|
|
# Test with logits.
|
|
y_true = constant_op.constant([[1, 0, 1], [0, 1, 1]])
|
|
logits = constant_op.constant([[100.0, -100.0, 100.0],
|
|
[100.0, 100.0, -100.0]])
|
|
weights = constant_op.constant([4, 3])
|
|
bce_obj = losses.BinaryCrossentropy(from_logits=True)
|
|
loss = bce_obj(y_true, logits, sample_weight=weights)
|
|
|
|
# Loss = max(x, 0) - x * z + log(1 + exp(-abs(x)))
|
|
# (where x = logits and z = y_true)
|
|
# Loss = [(0 + 0 + 0)/3, 200 / 3]
|
|
# Weighted loss = [0 * 4, 66.666 * 3]
|
|
# Reduced loss = (0 + 66.666 * 3) / 2
|
|
|
|
self.assertAlmostEqual(self.evaluate(loss), 100, 3)
|
|
|
|
def test_no_reduction(self):
|
|
y_true = constant_op.constant([[1, 0, 1], [0, 1, 1]])
|
|
logits = constant_op.constant([[100.0, -100.0, 100.0],
|
|
[100.0, 100.0, -100.0]])
|
|
bce_obj = losses.BinaryCrossentropy(
|
|
from_logits=True, reduction=losses_utils.ReductionV2.NONE)
|
|
loss = bce_obj(y_true, logits)
|
|
|
|
# Loss = max(x, 0) - x * z + log(1 + exp(-abs(x)))
|
|
# (where x = logits and z = y_true)
|
|
# Loss = [(0 + 0 + 0)/3, (200)/3]
|
|
|
|
self.assertAllClose((0., 66.6666), self.evaluate(loss), 3)
|
|
|
|
def test_label_smoothing(self):
|
|
logits = constant_op.constant([[100.0, -100.0, -100.0]])
|
|
y_true = constant_op.constant([[1, 0, 1]])
|
|
label_smoothing = 0.1
|
|
# Loss: max(x, 0) - x * z + log(1 + exp(-abs(x)))
|
|
# (where x = logits and z = y_true)
|
|
# Label smoothing: z' = z * (1 - L) + 0.5L
|
|
# 1 = 1 - 0.5L
|
|
# 0 = 0.5L
|
|
# Applying the above two fns to the given input:
|
|
# (100 - 100 * (1 - 0.5 L) + 0 +
|
|
# 0 + 100 * (0.5 L) + 0 +
|
|
# 0 + 100 * (1 - 0.5 L) + 0) * (1/3)
|
|
# = (100 + 50L) * 1/3
|
|
bce_obj = losses.BinaryCrossentropy(
|
|
from_logits=True, label_smoothing=label_smoothing)
|
|
loss = bce_obj(y_true, logits)
|
|
expected_value = (100.0 + 50.0 * label_smoothing) / 3.0
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_value, 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class CategoricalCrossentropyTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
cce_obj = losses.CategoricalCrossentropy(
|
|
reduction=losses_utils.ReductionV2.SUM, name='bce_1')
|
|
self.assertEqual(cce_obj.name, 'bce_1')
|
|
self.assertEqual(cce_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct_unweighted(self):
|
|
y_true = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]],
|
|
dtype=dtypes.int64)
|
|
y_pred = constant_op.constant([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
|
|
dtype=dtypes.float32)
|
|
cce_obj = losses.CategoricalCrossentropy()
|
|
loss = cce_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[10., 0., 0.], [0., 10., 0.], [0., 0., 10.]])
|
|
cce_obj = losses.CategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
cce_obj = losses.CategoricalCrossentropy()
|
|
y_true = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
y_pred = constant_op.constant(
|
|
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]], dtype=dtypes.float32)
|
|
loss = cce_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), .3239, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.CategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits)
|
|
self.assertAlmostEqual(self.evaluate(loss), .0573, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
cce_obj = losses.CategoricalCrossentropy()
|
|
y_true = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
y_pred = constant_op.constant(
|
|
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]], dtype=dtypes.float32)
|
|
loss = cce_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), .7449, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.CategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), .1317, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
cce_obj = losses.CategoricalCrossentropy()
|
|
y_true = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
y_pred = constant_op.constant(
|
|
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]], dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([[1.2], [3.4], [5.6]], shape=(3, 1))
|
|
loss = cce_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 1.0696, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.CategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.31829, 3)
|
|
|
|
def test_no_reduction(self):
|
|
y_true = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.CategoricalCrossentropy(
|
|
from_logits=True, reduction=losses_utils.ReductionV2.NONE)
|
|
loss = cce_obj(y_true, logits)
|
|
self.assertAllClose((0.001822, 0.000459, 0.169846), self.evaluate(loss), 3)
|
|
|
|
def test_label_smoothing(self):
|
|
logits = constant_op.constant([[100.0, -100.0, -100.0]])
|
|
y_true = constant_op.constant([[1, 0, 0]])
|
|
label_smoothing = 0.1
|
|
# Softmax Cross Entropy Loss: -\sum_i p_i \log q_i
|
|
# where for a softmax activation
|
|
# \log q_i = x_i - \log \sum_j \exp x_j
|
|
# = x_i - x_max - \log \sum_j \exp (x_j - x_max)
|
|
# For our activations, [100, -100, -100]
|
|
# \log ( exp(0) + exp(-200) + exp(-200) ) = 0
|
|
# so our log softmaxes become: [0, -200, -200]
|
|
# Label smoothing: z' = z * (1 - L) + L/n
|
|
# 1 = 1 - L + L/n
|
|
# 0 = L/n
|
|
# Applying the above two fns to the given input:
|
|
# -0 * (1 - L + L/n) + 200 * L/n + 200 * L/n = 400 L/n
|
|
cce_obj = losses.CategoricalCrossentropy(
|
|
from_logits=True, label_smoothing=label_smoothing)
|
|
loss = cce_obj(y_true, logits)
|
|
expected_value = 400.0 * label_smoothing / 3.0
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_value, 3)
|
|
|
|
def test_shape_mismatch(self):
|
|
y_true = constant_op.constant([[0], [1], [2]])
|
|
y_pred = constant_op.constant([[.9, .05, .05], [.5, .89, .6],
|
|
[.05, .01, .94]])
|
|
|
|
cce_obj = losses.CategoricalCrossentropy()
|
|
with self.assertRaisesRegex(ValueError, 'Shapes .+ are incompatible'):
|
|
cce_obj(y_true, y_pred)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class SparseCategoricalCrossentropyTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
cce_obj = losses.SparseCategoricalCrossentropy(
|
|
reduction=losses_utils.ReductionV2.SUM, name='scc')
|
|
self.assertEqual(cce_obj.name, 'scc')
|
|
self.assertEqual(cce_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct_unweighted(self):
|
|
y_true = constant_op.constant([[0], [1], [2]], dtype=dtypes.int64)
|
|
y_pred = constant_op.constant([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
|
|
dtype=dtypes.float32)
|
|
cce_obj = losses.SparseCategoricalCrossentropy()
|
|
loss = cce_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[10., 0., 0.], [0., 10., 0.], [0., 0., 10.]])
|
|
cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
cce_obj = losses.SparseCategoricalCrossentropy()
|
|
y_true = constant_op.constant([0, 1, 2])
|
|
y_pred = constant_op.constant(
|
|
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]], dtype=dtypes.float32)
|
|
loss = cce_obj(y_true, y_pred)
|
|
self.assertAlmostEqual(self.evaluate(loss), .3239, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits)
|
|
self.assertAlmostEqual(self.evaluate(loss), .0573, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
cce_obj = losses.SparseCategoricalCrossentropy()
|
|
y_true = constant_op.constant([[0], [1], [2]])
|
|
y_pred = constant_op.constant(
|
|
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]], dtype=dtypes.float32)
|
|
loss = cce_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), .7449, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), .1317, 3)
|
|
|
|
def test_sample_weighted(self):
|
|
cce_obj = losses.SparseCategoricalCrossentropy()
|
|
y_true = constant_op.constant([[0], [1], [2]])
|
|
y_pred = constant_op.constant(
|
|
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]], dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([[1.2], [3.4], [5.6]], shape=(3, 1))
|
|
loss = cce_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 1.0696, 3)
|
|
|
|
# Test with logits.
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
loss = cce_obj(y_true, logits, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.31829, 3)
|
|
|
|
def test_no_reduction(self):
|
|
y_true = constant_op.constant([[0], [1], [2]])
|
|
logits = constant_op.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]])
|
|
cce_obj = losses.SparseCategoricalCrossentropy(
|
|
from_logits=True, reduction=losses_utils.ReductionV2.NONE)
|
|
loss = cce_obj(y_true, logits)
|
|
self.assertAllClose((0.001822, 0.000459, 0.169846), self.evaluate(loss), 3)
|
|
|
|
def test_non_tensor(self):
|
|
# Test case for GitHub issue 33394.
|
|
cce_obj = losses.SparseCategoricalCrossentropy()
|
|
y_true = [[0], [1], [2]]
|
|
y_pred = [[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]]
|
|
loss = cce_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), .7449, 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class HingeTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
hinge_obj = losses.Hinge(
|
|
reduction=losses_utils.ReductionV2.SUM, name='hinge_loss')
|
|
self.assertEqual(hinge_obj.name, 'hinge_loss')
|
|
self.assertEqual(hinge_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
hinge_obj = losses.Hinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]]
|
|
# y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]]
|
|
# 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]]
|
|
# loss = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4]
|
|
# = [0.6, 0.4125]
|
|
# reduced loss = (0.6 + 0.4125) / 2
|
|
|
|
loss = hinge_obj(y_true, y_pred)
|
|
self.assertAllClose(0.506, self.evaluate(loss), atol=1e-3)
|
|
|
|
def test_scalar_weighted(self):
|
|
hinge_obj = losses.Hinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]]
|
|
# y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]]
|
|
# 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]]
|
|
# loss = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4]
|
|
# = [0.6, 0.4125]
|
|
# weighted_loss = [0.6 * 2.3, 0.4125 * 2.3]
|
|
# reduced loss = (0.6 + 0.4125) * 2.3 / 2
|
|
|
|
loss = hinge_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 1.164, 3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = hinge_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAllClose(self.evaluate(loss), self.evaluate(loss_2), 1e-3)
|
|
|
|
def test_sample_weighted(self):
|
|
hinge_obj = losses.Hinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]]
|
|
# y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]]
|
|
# 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]]
|
|
# loss = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4]
|
|
# = [0.6, 0.4125]
|
|
# weighted loss = [0.6 * 1.2, 0.4125 * 3.4]
|
|
# reduced loss = (0.6 * 1.2 + 0.4125 * 3.4) / 2
|
|
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = hinge_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAllClose(self.evaluate(loss), 1.061, 1e-3)
|
|
|
|
def test_timestep_weighted(self):
|
|
hinge_obj = losses.Hinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]], shape=(2, 4, 1))
|
|
y_pred = constant_op.constant(
|
|
[[-0.3, 0.2, -0.1, 1.6], [-0.25, -1., 0.5, 0.6]], shape=(2, 4, 1))
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2, 1, 3], shape=(2, 4))
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[[-1], [1], [-1], [1]], [[-1], [-1], [1], [1]]]
|
|
# y_true * y_pred = [[[0.3], [0.2], [0.1], [1.6]],
|
|
# [[0.25], [1], [0.5], [0.6]]]
|
|
# 1 - y_true * y_pred = [[[0.7], [0.8], [0.9], [-0.6]],
|
|
# [[0.75], [0], [0.5], [0.4]]]
|
|
# loss = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]]
|
|
# weighted loss = [[2.1, 4.8, 4.5, 0], [3, 0, 0.5, 1.2]]
|
|
# reduced loss = (2.1 + 4.8 + 4.5 + 0 + 3 + 0 + 0.5 + 1.2) / 8
|
|
|
|
loss = hinge_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAllClose(self.evaluate(loss), 2.012, 1e-3)
|
|
|
|
def test_zero_weighted(self):
|
|
hinge_obj = losses.Hinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
loss = hinge_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAllClose(self.evaluate(loss), 0., 1e-3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class SquaredHingeTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
sq_hinge_obj = losses.SquaredHinge(
|
|
reduction=losses_utils.ReductionV2.SUM, name='sq_hinge_loss')
|
|
self.assertEqual(sq_hinge_obj.name, 'sq_hinge_loss')
|
|
self.assertEqual(sq_hinge_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
sq_hinge_obj = losses.SquaredHinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]]
|
|
# y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]]
|
|
# 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]]
|
|
# max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]]
|
|
# squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0],
|
|
# [0.5625, 0, 0.25, 0.16]]
|
|
# loss = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4]
|
|
# = [0.485, 0.2431]
|
|
# reduced loss = (0.485 + 0.2431) / 2
|
|
|
|
loss = sq_hinge_obj(y_true, y_pred)
|
|
self.assertAllClose(self.evaluate(loss), 0.364, 1e-3)
|
|
|
|
def test_scalar_weighted(self):
|
|
sq_hinge_obj = losses.SquaredHinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]]
|
|
# y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]]
|
|
# 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]]
|
|
# max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]]
|
|
# squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0],
|
|
# [0.5625, 0, 0.25, 0.16]]
|
|
# loss = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4]
|
|
# = [0.485, 0.2431]
|
|
# weighted loss = [0.485 * 2.3, 0.2431 * 2.3]
|
|
# reduced loss = (0.485 + 0.2431) * 2.3 / 2
|
|
|
|
loss = sq_hinge_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAllClose(self.evaluate(loss), 0.837, 1e-3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = sq_hinge_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3)
|
|
|
|
def test_sample_weighted(self):
|
|
sq_hinge_obj = losses.SquaredHinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]]
|
|
# y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]]
|
|
# 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]]
|
|
# max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]]
|
|
# squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0],
|
|
# [0.5625, 0, 0.25, 0.16]]
|
|
# loss = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4]
|
|
# = [0.485, 0.2431]
|
|
# weighted loss = [0.485 * 1.2, 0.2431 * 3.4]
|
|
# reduced loss = (0.485 * 1.2 + 0.2431 * 3.4) / 2
|
|
|
|
sample_weight = constant_op.constant([1.2, 3.4])
|
|
loss = sq_hinge_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAllClose(self.evaluate(loss), 0.704, 1e-3)
|
|
|
|
def test_timestep_weighted(self):
|
|
sq_hinge_obj = losses.SquaredHinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]], shape=(2, 4, 1))
|
|
y_pred = constant_op.constant(
|
|
[[-0.3, 0.2, -0.1, 1.6], [-0.25, -1., 0.5, 0.6]], shape=(2, 4, 1))
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2, 1, 3], shape=(2, 4))
|
|
|
|
# loss = max(0, 1-y_true * y_pred), where y_true is -1/1
|
|
|
|
# y_true = [[[-1], [1], [-1], [1]], [[-1], [-1], [1], [1]]]
|
|
# y_true * y_pred = [[[0.3], [0.2], [0.1], [1.6]],
|
|
# [[0.25], [1], [0.5], [0.6]]]
|
|
# 1 - y_true * y_pred = [[[0.7], [0.8], [0.9], [-0.6]],
|
|
# [[0.75], [0], [0.5], [0.4]]]
|
|
# loss = [[0.49, 0.64, 0.81, 0], [0.5625, 0, 0.25, 0.16]]
|
|
# weighted loss = [[1.47, 3.84, 4.05, 0], [2.25, 0, 0.25, 0.48]]
|
|
# reduced loss = (1.47 + 3.84 + 4.05 + 0 + 2.25 + 0 + 0.25 + 0.48) / 8
|
|
|
|
loss = sq_hinge_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAllClose(self.evaluate(loss), 1.542, 1e-3)
|
|
|
|
def test_zero_weighted(self):
|
|
sq_hinge_obj = losses.SquaredHinge()
|
|
y_true = constant_op.constant([[0, 1, 0, 1], [0, 0, 1, 1]])
|
|
y_pred = constant_op.constant([[-0.3, 0.2, -0.1, 1.6],
|
|
[-0.25, -1., 0.5, 0.6]])
|
|
loss = sq_hinge_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAllClose(self.evaluate(loss), 0., 1e-3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class CategoricalHingeTest(test.TestCase):
|
|
|
|
def test_config(self):
|
|
cat_hinge_obj = losses.CategoricalHinge(
|
|
reduction=losses_utils.ReductionV2.SUM, name='cat_hinge_loss')
|
|
self.assertEqual(cat_hinge_obj.name, 'cat_hinge_loss')
|
|
self.assertEqual(cat_hinge_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
cat_hinge_obj = losses.CategoricalHinge()
|
|
y_true = constant_op.constant([1, 9, 2, -5], shape=(2, 2))
|
|
y_pred = constant_op.constant([4, 8, 12, 8],
|
|
shape=(2, 2),
|
|
dtype=dtypes.float32)
|
|
loss = cat_hinge_obj(y_true, y_pred)
|
|
|
|
# pos = reduce_sum(y_true * y_pred) = [1*4+8*9, 12*2+8*-5] = [76, -16]
|
|
# neg = reduce_max((1. - y_true) * y_pred) = [[0, -64], [-12, 48]] = [0, 48]
|
|
# cat_hinge = max(0., neg - pos + 1.) = [0, 65]
|
|
# reduced_loss = (0 + 65)/2 = 32.5
|
|
self.assertAlmostEqual(self.evaluate(loss), 32.5, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
cat_hinge_obj = losses.CategoricalHinge()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = cat_hinge_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), 83.95, 3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = cat_hinge_obj(y_true, y_pred, sample_weight=2.3)
|
|
self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3)
|
|
|
|
def test_sample_weighted(self):
|
|
cat_hinge_obj = losses.CategoricalHinge()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = cat_hinge_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 124.1, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
cat_hinge_obj = losses.CategoricalHinge()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3, 1))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3, 1),
|
|
dtype=dtypes.float32)
|
|
sample_weight = constant_op.constant([3, 6, 5, 0, 4, 2], shape=(2, 3))
|
|
loss = cat_hinge_obj(y_true, y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 4.0, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
cat_hinge_obj = losses.CategoricalHinge()
|
|
y_true = constant_op.constant([1, 9, 2, -5, -2, 6], shape=(2, 3))
|
|
y_pred = constant_op.constant([4, 8, 12, 8, 1, 3],
|
|
shape=(2, 3),
|
|
dtype=dtypes.float32)
|
|
loss = cat_hinge_obj(y_true, y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0., 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class LogCoshTest(test.TestCase):
|
|
|
|
def setup(self):
|
|
y_pred = np.asarray([1, 9, 2, -5, -2, 6]).reshape((2, 3))
|
|
y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3))
|
|
|
|
self.batch_size = 6
|
|
error = y_pred - y_true
|
|
self.expected_losses = np.log((np.exp(error) + np.exp(-error)) / 2)
|
|
|
|
self.y_pred = constant_op.constant(y_pred, dtype=dtypes.float32)
|
|
self.y_true = constant_op.constant(y_true)
|
|
|
|
def test_config(self):
|
|
logcosh_obj = losses.LogCosh(
|
|
reduction=losses_utils.ReductionV2.SUM, name='logcosh_loss')
|
|
self.assertEqual(logcosh_obj.name, 'logcosh_loss')
|
|
self.assertEqual(logcosh_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
self.setup()
|
|
logcosh_obj = losses.LogCosh()
|
|
|
|
loss = logcosh_obj(self.y_true, self.y_pred)
|
|
expected_loss = np.sum(self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
self.setup()
|
|
logcosh_obj = losses.LogCosh()
|
|
sample_weight = 2.3
|
|
|
|
loss = logcosh_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
expected_loss = sample_weight * np.sum(
|
|
self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = logcosh_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3)
|
|
|
|
def test_sample_weighted(self):
|
|
self.setup()
|
|
logcosh_obj = losses.LogCosh()
|
|
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = logcosh_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
|
|
expected_loss = np.multiply(
|
|
self.expected_losses,
|
|
np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)))
|
|
expected_loss = np.sum(expected_loss) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
self.setup()
|
|
logcosh_obj = losses.LogCosh()
|
|
y_true = np.asarray([1, 9, 2, -5, -2, 6]).reshape(2, 3, 1)
|
|
y_pred = np.asarray([4, 8, 12, 8, 1, 3]).reshape(2, 3, 1)
|
|
error = y_pred - y_true
|
|
expected_losses = np.log((np.exp(error) + np.exp(-error)) / 2)
|
|
sample_weight = np.array([3, 6, 5, 0, 4, 2]).reshape((2, 3, 1))
|
|
|
|
y_pred = constant_op.constant(y_pred, dtype=dtypes.float32)
|
|
y_true = constant_op.constant(y_true)
|
|
loss = logcosh_obj(
|
|
y_true,
|
|
y_pred,
|
|
sample_weight=constant_op.constant(sample_weight, shape=(2, 3)))
|
|
expected_loss = np.sum(expected_losses * sample_weight) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
self.setup()
|
|
logcosh_obj = losses.LogCosh()
|
|
sample_weight = 0
|
|
loss = logcosh_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0., 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class PoissonTest(test.TestCase):
|
|
|
|
def setup(self):
|
|
self.np_y_pred = np.asarray([1, 9, 2, 5, 2, 6]).reshape((2, 3))
|
|
self.np_y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3))
|
|
|
|
self.batch_size = 6
|
|
self.expected_losses = self.np_y_pred - np.multiply(self.np_y_true,
|
|
np.log(self.np_y_pred))
|
|
|
|
self.y_pred = constant_op.constant(self.np_y_pred, dtype=dtypes.float32)
|
|
self.y_true = constant_op.constant(self.np_y_true)
|
|
|
|
def test_config(self):
|
|
poisson_obj = losses.Poisson(
|
|
reduction=losses_utils.ReductionV2.SUM, name='poisson')
|
|
self.assertEqual(poisson_obj.name, 'poisson')
|
|
self.assertEqual(poisson_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
self.setup()
|
|
poisson_obj = losses.Poisson()
|
|
|
|
loss = poisson_obj(self.y_true, self.y_pred)
|
|
expected_loss = np.sum(self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
self.setup()
|
|
poisson_obj = losses.Poisson()
|
|
sample_weight = 2.3
|
|
loss = poisson_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
|
|
expected_loss = sample_weight * np.sum(
|
|
self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = poisson_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3)
|
|
|
|
def test_sample_weighted(self):
|
|
self.setup()
|
|
poisson_obj = losses.Poisson()
|
|
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = poisson_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
|
|
expected_loss = np.multiply(
|
|
self.expected_losses,
|
|
np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)))
|
|
expected_loss = np.sum(expected_loss) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
self.setup()
|
|
poisson_obj = losses.Poisson()
|
|
y_true = self.np_y_true.reshape(2, 3, 1)
|
|
y_pred = self.np_y_pred.reshape(2, 3, 1)
|
|
sample_weight = np.asarray([3, 6, 5, 0, 4, 2]).reshape(2, 3, 1)
|
|
expected_losses = y_pred - np.multiply(y_true, np.log(y_pred))
|
|
|
|
y_pred = constant_op.constant(y_pred, dtype=dtypes.float32)
|
|
y_true = constant_op.constant(y_true)
|
|
|
|
loss = poisson_obj(
|
|
y_true,
|
|
y_pred,
|
|
sample_weight=constant_op.constant(sample_weight, shape=(2, 3)))
|
|
expected_loss = np.sum(expected_losses * sample_weight) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
self.setup()
|
|
poisson_obj = losses.Poisson()
|
|
loss = poisson_obj(self.y_true, self.y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0., 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class KLDivergenceTest(test.TestCase):
|
|
|
|
def setup(self):
|
|
self.np_y_pred = np.asarray([.4, .9, .12, .36, .3, .4]).reshape((2, 3))
|
|
self.np_y_true = np.asarray([.5, .8, .12, .7, .43, .8]).reshape((2, 3))
|
|
|
|
self.batch_size = 2
|
|
self.expected_losses = np.multiply(self.np_y_true,
|
|
np.log(self.np_y_true / self.np_y_pred))
|
|
|
|
self.y_pred = constant_op.constant(self.np_y_pred, dtype=dtypes.float32)
|
|
self.y_true = constant_op.constant(self.np_y_true)
|
|
|
|
def test_config(self):
|
|
k_obj = losses.KLDivergence(
|
|
reduction=losses_utils.ReductionV2.SUM, name='kld')
|
|
self.assertEqual(k_obj.name, 'kld')
|
|
self.assertEqual(k_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_unweighted(self):
|
|
self.setup()
|
|
k_obj = losses.KLDivergence()
|
|
|
|
loss = k_obj(self.y_true, self.y_pred)
|
|
expected_loss = np.sum(self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
self.setup()
|
|
k_obj = losses.KLDivergence()
|
|
sample_weight = 2.3
|
|
|
|
loss = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
expected_loss = sample_weight * np.sum(
|
|
self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3)
|
|
|
|
def test_sample_weighted(self):
|
|
self.setup()
|
|
k_obj = losses.KLDivergence()
|
|
sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1))
|
|
loss = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
|
|
expected_loss = np.multiply(
|
|
self.expected_losses,
|
|
np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape(2, 3))
|
|
expected_loss = np.sum(expected_loss) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
self.setup()
|
|
k_obj = losses.KLDivergence()
|
|
y_true = self.np_y_true.reshape(2, 3, 1)
|
|
y_pred = self.np_y_pred.reshape(2, 3, 1)
|
|
sample_weight = np.asarray([3, 6, 5, 0, 4, 2]).reshape(2, 3)
|
|
expected_losses = np.sum(
|
|
np.multiply(y_true, np.log(y_true / y_pred)), axis=-1)
|
|
|
|
y_pred = constant_op.constant(y_pred, dtype=dtypes.float32)
|
|
y_true = constant_op.constant(y_true)
|
|
loss = k_obj(
|
|
y_true, y_pred, sample_weight=constant_op.constant(sample_weight))
|
|
|
|
num_timesteps = 3
|
|
expected_loss = np.sum(expected_losses * sample_weight) / (
|
|
self.batch_size * num_timesteps)
|
|
self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
self.setup()
|
|
k_obj = losses.KLDivergence()
|
|
loss = k_obj(self.y_true, self.y_pred, sample_weight=0)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0., 3)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class HuberLossTest(test.TestCase):
|
|
|
|
def huber_loss(self, y_true, y_pred, delta=1.0):
|
|
error = y_pred - y_true
|
|
abs_error = np.abs(error)
|
|
|
|
quadratic = np.minimum(abs_error, delta)
|
|
linear = np.subtract(abs_error, quadratic)
|
|
return np.add(
|
|
np.multiply(0.5, np.multiply(quadratic, quadratic)),
|
|
np.multiply(delta, linear))
|
|
|
|
def setup(self, delta=1.0):
|
|
self.np_y_pred = np.asarray([.9, .2, .2, .8, .4, .6]).reshape((2, 3))
|
|
self.np_y_true = np.asarray([1., 0., 1., 1., 0., 0.]).reshape((2, 3))
|
|
|
|
self.batch_size = 6
|
|
self.expected_losses = self.huber_loss(self.np_y_true, self.np_y_pred,
|
|
delta)
|
|
|
|
self.y_pred = constant_op.constant(self.np_y_pred)
|
|
self.y_true = constant_op.constant(self.np_y_true)
|
|
|
|
def test_config(self):
|
|
h_obj = losses.Huber(reduction=losses_utils.ReductionV2.SUM, name='huber')
|
|
self.assertEqual(h_obj.name, 'huber')
|
|
self.assertEqual(h_obj.reduction, losses_utils.ReductionV2.SUM)
|
|
|
|
def test_all_correct(self):
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
loss = h_obj(self.y_true, self.y_true)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
|
|
def test_unweighted(self):
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
loss = h_obj(self.y_true, self.y_pred)
|
|
actual_loss = np.sum(self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3)
|
|
|
|
def test_scalar_weighted(self):
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
sample_weight = 2.3
|
|
loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
actual_loss = sample_weight * np.sum(self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3)
|
|
|
|
# Verify we get the same output when the same input is given
|
|
loss_2 = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), self.evaluate(loss_2), 3)
|
|
|
|
def test_sample_weighted(self):
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
sample_weight = constant_op.constant((1.2, 3.4), shape=(2, 1))
|
|
|
|
loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
actual_loss = np.multiply(
|
|
self.expected_losses,
|
|
np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)))
|
|
actual_loss = np.sum(actual_loss) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3)
|
|
|
|
def test_timestep_weighted(self):
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
y_pred = self.np_y_pred.reshape((2, 3, 1))
|
|
y_true = self.np_y_true.reshape((2, 3, 1))
|
|
expected_losses = self.huber_loss(y_true, y_pred)
|
|
|
|
y_pred = constant_op.constant(y_pred)
|
|
y_true = constant_op.constant(y_true)
|
|
sample_weight = np.array([3, 6, 5, 0, 4, 2]).reshape((2, 3, 1))
|
|
loss = h_obj(
|
|
y_true,
|
|
y_pred,
|
|
sample_weight=constant_op.constant(sample_weight, shape=(2, 3)))
|
|
actual_loss = np.multiply(expected_losses, sample_weight)
|
|
actual_loss = np.sum(actual_loss) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3)
|
|
|
|
def test_zero_weighted(self):
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
sample_weight = 0
|
|
loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0., 3)
|
|
|
|
def test_non_default_delta(self):
|
|
self.setup(delta=0.8)
|
|
h_obj = losses.Huber(delta=0.8)
|
|
sample_weight = 2.3
|
|
loss = h_obj(self.y_true, self.y_pred, sample_weight=sample_weight)
|
|
actual_loss = sample_weight * np.sum(self.expected_losses) / self.batch_size
|
|
self.assertAlmostEqual(self.evaluate(loss), actual_loss, 3)
|
|
|
|
def test_loss_with_non_default_dtype(self):
|
|
# Test case for GitHub issue:
|
|
# https://github.com/tensorflow/tensorflow/issues/39004
|
|
self.setup()
|
|
h_obj = losses.Huber()
|
|
try:
|
|
backend.set_floatx('float64')
|
|
loss = h_obj(self.y_true, self.y_true)
|
|
self.assertAlmostEqual(self.evaluate(loss), 0.0, 3)
|
|
finally:
|
|
backend.set_floatx('float32')
|
|
|
|
|
|
class BinaryTruePositivesViaControlFlow(losses.Loss):
|
|
|
|
def __init__(self, reduction=losses_utils.ReductionV2.AUTO):
|
|
super(BinaryTruePositivesViaControlFlow, self).__init__(reduction=reduction)
|
|
|
|
def call(self, y_true, y_pred):
|
|
y_true = math_ops.cast(y_true, dtypes.bool)
|
|
y_pred = math_ops.cast(y_pred, dtypes.bool)
|
|
|
|
result = constant_op.constant(0.0)
|
|
for i in range(len(y_true)):
|
|
for j in range(len(y_true[i])):
|
|
if y_true[i][j] and y_pred[i][j]:
|
|
result = result + 1
|
|
return result
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class CustomLossTest(test.TestCase):
|
|
|
|
def test_autograph(self):
|
|
y_true = constant_op.constant([[0, 0.9, 0, 1, 0], [0, 0, 1, 1, 1],
|
|
[1, 1, 1, 1, 0], [0, 0, 0, 0, 1.5]])
|
|
y_pred = constant_op.constant([[0, 0, 1, 5, 0], [1, 1, 1, 1, 1],
|
|
[0, 1, 0, 1, 0], [1, 10, 1, 1, 1]])
|
|
|
|
@def_function.function
|
|
def loss_fn(y_true, y_pred):
|
|
loss_obj = BinaryTruePositivesViaControlFlow()
|
|
return loss_obj(y_true, y_pred)
|
|
|
|
loss = loss_fn(y_true, y_pred)
|
|
self.assertAllEqual(
|
|
self.evaluate(loss),
|
|
7.0,
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|