STT-tensorflow/tensorflow/python/keras/layers/merge_test.py
2020-10-24 10:47:27 +03:00

395 lines
15 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for merge layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import combinations
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.platform import test
@keras_parameterized.run_all_keras_modes
class MergeLayersTest(keras_parameterized.TestCase):
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
o = add_layer([i1, i2, i3])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
model = keras.models.Model([i1, i2, i3], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
x3 = np.random.random((2, 4, 5))
out = model.predict([x1, x2, x3])
self.assertEqual(out.shape, (2, 4, 5))
self.assertAllClose(out, x1 + x2 + x3, atol=1e-4)
self.assertEqual(
add_layer.compute_mask([i1, i2, i3], [None, None, None]), None)
self.assertTrue(
np.all(
K.eval(
add_layer.compute_mask(
[i1, i2], [K.variable(x1), K.variable(x2)]))))
with self.assertRaisesRegex(ValueError, '`mask` should be a list.'):
add_layer.compute_mask([i1, i2, i3], x1)
with self.assertRaisesRegex(ValueError, '`inputs` should be a list.'):
add_layer.compute_mask(i1, [None, None, None])
with self.assertRaisesRegex(ValueError, ' should have the same length.'):
add_layer.compute_mask([i1, i2, i3], [None, None])
def test_merge_subtract(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
subtract_layer = keras.layers.Subtract()
o = subtract_layer([i1, i2])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 4, 5))
self.assertAllClose(out, x1 - x2, atol=1e-4)
self.assertEqual(subtract_layer.compute_mask([i1, i2], [None, None]), None)
self.assertTrue(
np.all(
K.eval(
subtract_layer.compute_mask(
[i1, i2], [K.variable(x1), K.variable(x2)]))))
with self.assertRaisesRegex(ValueError, '`mask` should be a list.'):
subtract_layer.compute_mask([i1, i2], x1)
with self.assertRaisesRegex(ValueError, '`inputs` should be a list.'):
subtract_layer.compute_mask(i1, [None, None])
with self.assertRaisesRegex(ValueError,
'layer should be called on exactly 2 inputs'):
subtract_layer([i1, i2, i3])
with self.assertRaisesRegex(ValueError,
'layer should be called on exactly 2 inputs'):
subtract_layer([i1])
def test_merge_multiply(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
o = keras.layers.multiply([i1, i2, i3])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
model = keras.models.Model([i1, i2, i3], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
x3 = np.random.random((2, 4, 5))
out = model.predict([x1, x2, x3])
self.assertEqual(out.shape, (2, 4, 5))
self.assertAllClose(out, x1 * x2 * x3, atol=1e-4)
def test_merge_average(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
o = keras.layers.average([i1, i2])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 4, 5))
self.assertAllClose(out, 0.5 * (x1 + x2), atol=1e-4)
def test_merge_maximum(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
o = keras.layers.maximum([i1, i2])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 4, 5))
self.assertAllClose(out, np.maximum(x1, x2), atol=1e-4)
def test_merge_minimum(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
o = keras.layers.minimum([i1, i2])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 4, 5))
self.assertAllClose(out, np.minimum(x1, x2), atol=1e-4)
def test_merge_concatenate(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
concat_layer = keras.layers.Concatenate(axis=1)
o = concat_layer([i1, i2])
self.assertListEqual(o.shape.as_list(), [None, 8, 5])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
x1 = np.random.random((2, 4, 5))
x2 = np.random.random((2, 4, 5))
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 8, 5))
self.assertAllClose(out, np.concatenate([x1, x2], axis=1), atol=1e-4)
self.assertEqual(concat_layer.compute_mask([i1, i2], [None, None]), None)
self.assertTrue(
np.all(
K.eval(
concat_layer.compute_mask(
[i1, i2], [K.variable(x1), K.variable(x2)]))))
# Should work with unit-length input.
unit_length_o = concat_layer([i1])
self.assertListEqual(unit_length_o.shape.as_list(), i1.shape.as_list())
with self.assertRaisesRegex(ValueError, '`mask` should be a list.'):
concat_layer.compute_mask([i1, i2], x1)
with self.assertRaisesRegex(ValueError, '`inputs` should be a list.'):
concat_layer.compute_mask(i1, [None, None])
with self.assertRaisesRegex(ValueError, 'should have the same length'):
concat_layer.compute_mask([i1, i2], [None])
with self.assertRaisesRegex(ValueError,
'layer should be called on a list of inputs'):
concat_layer(i1)
def test_merge_dot(self):
i1 = keras.layers.Input(shape=(4,))
i2 = keras.layers.Input(shape=(4,))
o = keras.layers.dot([i1, i2], axes=1)
self.assertListEqual(o.shape.as_list(), [None, 1])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
_ = keras.layers.Dot(axes=1).get_config()
x1 = np.random.random((2, 4))
x2 = np.random.random((2, 4))
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 1))
expected = np.zeros((2, 1))
expected[0, 0] = np.dot(x1[0], x2[0])
expected[1, 0] = np.dot(x1[1], x2[1])
self.assertAllClose(out, expected, atol=1e-4)
# Test with negative tuple of axes.
o = keras.layers.dot([i1, i2], axes=(-1, -1))
self.assertListEqual(o.shape.as_list(), [None, 1])
model = keras.models.Model([i1, i2], o)
model.run_eagerly = testing_utils.should_run_eagerly()
out = model.predict([x1, x2])
self.assertEqual(out.shape, (2, 1))
self.assertAllClose(out, expected, atol=1e-4)
# test compute_output_shape
layer = keras.layers.Dot(axes=-1)
self.assertEqual(layer.compute_output_shape([(4, 5), (4, 5)]), (4, 1))
@parameterized.named_parameters(
*testing_utils.generate_combinations_with_testcase_name(
layer=[keras.layers.Add, keras.layers.Subtract,
keras.layers.Multiply, keras.layers.Minimum,
keras.layers.Maximum, keras.layers.Average,
keras.layers.Concatenate]))
def test_merge_with_ragged_input(self, layer):
ragged_data = ragged_factory_ops.constant(
[[1., 1., 1.], [1., 1.], [1., 1., 1., 1.]], ragged_rank=1)
dense_data = ragged_data.to_tensor()
input1 = keras.Input(shape=(None,), ragged=True)
input2 = keras.Input(shape=(None,), ragged=True)
out = keras.layers.Add()([input1, input2])
model = keras.models.Model(inputs=[input1, input2], outputs=out)
out_ragged = model.predict([ragged_data, ragged_data], steps=1)
out_ragged = ragged_tensor.convert_to_tensor_or_ragged_tensor(
out_ragged).to_tensor()
input1 = keras.Input(shape=(None,))
input2 = keras.Input(shape=(None,))
out = keras.layers.Add()([input1, input2])
model = keras.models.Model(inputs=[input1, input2], outputs=out)
out_dense = model.predict([dense_data, dense_data], steps=1)
self.assertAllEqual(out_dense, out_ragged)
@parameterized.named_parameters(
*testing_utils.generate_combinations_with_testcase_name(
layer=[keras.layers.Add, keras.layers.Subtract,
keras.layers.Multiply, keras.layers.Minimum,
keras.layers.Maximum, keras.layers.Average]))
def test_merge_with_scalar_input(self, layer):
x1 = np.array((1))
x2 = np.array((2))
out = layer()([x1, x2])
self.assertEqual(out.shape, ())
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class MergeLayersTestNoExecution(test.TestCase):
def test_merge_elementwise_errors(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 6))
with self.assertRaises(ValueError):
keras.layers.add([i1, i2])
with self.assertRaises(ValueError):
keras.layers.add([i1])
with self.assertRaises(ValueError):
keras.layers.add(i1)
with self.assertRaises(ValueError):
keras.layers.add([i1])
def test_concatenate_errors(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(3, 5))
with self.assertRaisesRegex(ValueError, 'inputs with matching shapes'):
keras.layers.concatenate([i1, i2], axis=-1)
with self.assertRaisesRegex(ValueError, 'called on a list'):
keras.layers.concatenate(i1, axis=-1)
def test_concatenate_with_partial_shape(self):
i1 = keras.layers.Input(shape=(5,), batch_size=32)
i2 = keras.layers.Input(shape=(5,))
i3 = keras.layers.Input(shape=(4, 5), batch_size=32)
i4 = keras.layers.Input(shape=(None,), batch_size=64)
i5 = keras.layers.Input(shape=(7,))
# Valid case since the i2 has a dynamic batch size.
keras.layers.concatenate([i1, i2], axis=-1)
# Different rank
with self.assertRaisesRegex(ValueError, 'inputs with matching shapes'):
keras.layers.concatenate([i1, i3], axis=-1)
# Valid case with partial dimension information
keras.layers.concatenate([i1, i4], axis=0)
keras.layers.concatenate([i2, i4], axis=0)
keras.layers.concatenate([i2, i4], axis=1)
keras.layers.concatenate([i1, i2, i4], axis=0)
keras.layers.concatenate([i1, i5], axis=1)
# Mismatch in batch dimension.
with self.assertRaisesRegex(ValueError, 'inputs with matching shapes'):
keras.layers.concatenate([i1, i4], axis=-1)
with self.assertRaisesRegex(ValueError, 'inputs with matching shapes'):
keras.layers.concatenate([i1, i2, i4], axis=-1)
def test_dot_errors(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 6))
i3 = keras.layers.Input(shape=(4, 6))
with self.assertRaises(ValueError):
keras.layers.dot([i1, i2], axes=-1)
with self.assertRaises(ValueError):
keras.layers.dot(i1, axes=-1)
with self.assertRaises(ValueError):
keras.layers.dot([i1], axes=-1)
with self.assertRaises(ValueError):
keras.layers.dot([i1, i2, i3], axes=-1)
with self.assertRaises(ValueError):
dot = keras.layers.Dot(1)
dot.compute_output_shape(1)
def test_merge_subtract(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
y = keras.layers.subtract([i1, i2])
self.assertEqual(y.shape.as_list(), [None, 4, 5])
# Test invalid use cases
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(3, 5))
with self.assertRaises(ValueError):
keras.layers.subtract([i1, i2])
with self.assertRaises(ValueError):
keras.layers.subtract([i1, i1, i1])
def test_merge_add_masking(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
m1 = keras.layers.Masking()(i1)
layer = keras.layers.Add()
o = layer([m1, i2])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
mask = layer.output_mask
self.assertListEqual(mask.shape.as_list(), [None, 4])
def test_merge_add_dynamic_shape(self):
i1 = keras.Input(batch_shape=(4, None), dtype='float32')
i2 = keras.Input(batch_shape=(4, 5), dtype='float32')
layer = keras.layers.Add()
o = layer([i1, i2])
self.assertListEqual(o.shape.as_list(), [4, 5])
def test_merge_concatenate_masking(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
m1 = keras.layers.Masking()(i1)
layer = keras.layers.Concatenate()
o = layer([m1, i2])
self.assertListEqual(o.shape.as_list(), [None, 4, 10])
mask = layer.output_mask
self.assertListEqual(mask.shape.as_list(), [None, 4])
def test_user_changes_to_input_structure(self):
a = keras.layers.Input(shape=(4, 5))
struct = [a, a]
concat1 = keras.layers.Concatenate(1)
b = concat1(struct)
struct.append(b)
concat2 = keras.layers.Concatenate(1)
c = concat2(struct)
# Checks that the append to `struct` doesn't affect `concat1`s
# node data.
self.assertLen(concat1.inbound_nodes[0].input_tensors, 2)
self.assertLen(concat2.inbound_nodes[0].input_tensors, 3)
keras.Model(a, c) # Ensure model can be built.
if __name__ == '__main__':
test.main()