STT-tensorflow/tensorflow/python/keras/layers/convolutional_transpose_test.py
Yanhui Liang 4e1db954d3 Make convolutional_transpose_test run.
PiperOrigin-RevId: 328662898
Change-Id: Ib3cf450f4af4b37f4476ca64c93267cf41f23d82
2020-08-26 20:36:15 -07:00

213 lines
7.6 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for convolutional transpose layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
@keras_parameterized.run_all_keras_modes
class Conv2DTransposeTest(keras_parameterized.TestCase):
def _run_test(self, kwargs):
num_samples = 2
stack_size = 3
num_row = 7
num_col = 6
with self.cached_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.Conv2DTranspose,
kwargs=kwargs,
input_shape=(num_samples, num_row, num_col, stack_size))
@parameterized.named_parameters(
('padding_valid', {'padding': 'valid'}),
('padding_same', {'padding': 'same'}),
('strides', {'strides': (2, 2)}),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {'data_format': 'channels_first'}),
('strides_output_padding', {'strides': (2, 2), 'output_padding': (1, 1)}),
)
def test_conv2d_transpose(self, kwargs):
kwargs['filters'] = 2
kwargs['kernel_size'] = (3, 3)
if 'data_format' not in kwargs or test.is_gpu_available(cuda_only=True):
self._run_test(kwargs)
def test_conv2d_transpose_regularizers(self):
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'kernel_regularizer': 'l2',
'bias_regularizer': 'l2',
'activity_regularizer': 'l2',
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.Conv2DTranspose(**kwargs)
layer.build((None, 5, 5, 2))
self.assertEqual(len(layer.losses), 2)
layer(keras.backend.variable(np.ones((1, 5, 5, 2))))
self.assertEqual(len(layer.losses), 3)
def test_conv2d_transpose_constraints(self):
k_constraint = lambda x: x
b_constraint = lambda x: x
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'kernel_constraint': k_constraint,
'bias_constraint': b_constraint,
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.Conv2DTranspose(**kwargs)
layer.build((None, 5, 5, 2))
self.assertEqual(layer.kernel.constraint, k_constraint)
self.assertEqual(layer.bias.constraint, b_constraint)
def test_conv2d_transpose_dilation(self):
testing_utils.layer_test(keras.layers.Conv2DTranspose,
kwargs={'filters': 2,
'kernel_size': 3,
'padding': 'same',
'data_format': 'channels_last',
'dilation_rate': (2, 2)},
input_shape=(2, 5, 6, 3))
input_data = np.arange(48).reshape((1, 4, 4, 3)).astype(np.float32)
expected_output = np.float32([[192, 228, 192, 228],
[336, 372, 336, 372],
[192, 228, 192, 228],
[336, 372, 336, 372]]).reshape((1, 4, 4, 1))
testing_utils.layer_test(keras.layers.Conv2DTranspose,
input_data=input_data,
kwargs={'filters': 1,
'kernel_size': 3,
'padding': 'same',
'data_format': 'channels_last',
'dilation_rate': (2, 2),
'kernel_initializer': 'ones'},
expected_output=expected_output)
@keras_parameterized.run_all_keras_modes
class Conv3DTransposeTest(keras_parameterized.TestCase):
def _run_test(self, kwargs):
num_samples = 2
stack_size = 3
num_row = 7
num_col = 6
depth = 5
with self.cached_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.Conv3DTranspose,
kwargs=kwargs,
input_shape=(num_samples, depth, num_row, num_col, stack_size))
@parameterized.named_parameters(
('padding_valid', {'padding': 'valid'}),
('padding_same', {'padding': 'same'}),
('strides', {'strides': (2, 2, 2)}),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {'data_format': 'channels_first'}),
('strides_output_padding', {'strides': (2, 2, 2),
'output_padding': (1, 1, 1)}),
)
def test_conv3d_transpose(self, kwargs):
kwargs['filters'] = 2
kwargs['kernel_size'] = (3, 3, 3)
if 'data_format' not in kwargs or test.is_gpu_available(cuda_only=True):
self._run_test(kwargs)
def test_conv3d_transpose_regularizers(self):
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'kernel_regularizer': 'l2',
'bias_regularizer': 'l2',
'activity_regularizer': 'l2',
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.Conv3DTranspose(**kwargs)
layer.build((None, 5, 5, 5, 2))
self.assertEqual(len(layer.losses), 2)
layer(keras.backend.variable(np.ones((1, 5, 5, 5, 2))))
self.assertEqual(len(layer.losses), 3)
def test_conv3d_transpose_constraints(self):
k_constraint = lambda x: x
b_constraint = lambda x: x
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'kernel_constraint': k_constraint,
'bias_constraint': b_constraint,
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.Conv3DTranspose(**kwargs)
layer.build((None, 5, 5, 5, 2))
self.assertEqual(layer.kernel.constraint, k_constraint)
self.assertEqual(layer.bias.constraint, b_constraint)
def test_conv3d_transpose_dynamic_shape(self):
input_data = np.random.random((1, 3, 3, 3, 3)).astype(np.float32)
with self.cached_session(use_gpu=True):
# Won't raise error here.
testing_utils.layer_test(
keras.layers.Conv3DTranspose,
kwargs={
'data_format': 'channels_last',
'filters': 3,
'kernel_size': 3
},
input_shape=(None, None, None, None, 3),
input_data=input_data)
if test.is_gpu_available(cuda_only=True):
testing_utils.layer_test(
keras.layers.Conv3DTranspose,
kwargs={
'data_format': 'channels_first',
'filters': 3,
'kernel_size': 3
},
input_shape=(None, 3, None, None, None),
input_data=input_data)
if __name__ == '__main__':
test.main()