- assertEquals -> assertEqual - assertRaisesRegexp -> assertRegexpMatches - assertRegexpMatches -> assertRegex PiperOrigin-RevId: 319118081 Change-Id: Ieb457128522920ab55d6b69a7f244ab798a7d689
242 lines
8.5 KiB
Python
242 lines
8.5 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
class MiniModel(tf.keras.Model):
|
|
"""Minimal model for mnist.
|
|
|
|
Useful for testing and debugging on slow TPU simulators.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(MiniModel, self).__init__(name='')
|
|
self.fc = tf.keras.layers.Dense(1, name='fc', kernel_initializer='ones',
|
|
bias_initializer='ones')
|
|
|
|
def call(self, inputs, training=True):
|
|
return self.fc(inputs)
|
|
|
|
|
|
class DefunnedMiniModel(MiniModel):
|
|
|
|
@tf.function
|
|
def call(self, inputs, training=True):
|
|
return super(DefunnedMiniModel, self).call(inputs, training=training)
|
|
|
|
|
|
class ModelWithOptimizer(tf.keras.Model):
|
|
|
|
def __init__(self):
|
|
super(ModelWithOptimizer, self).__init__()
|
|
self.dense = tf.keras.layers.Dense(1)
|
|
self.optimizer = tf.keras.optimizers.Adam(0.01)
|
|
|
|
@tf.function(
|
|
input_signature=(tf.TensorSpec([None, 2], tf.float32),
|
|
tf.TensorSpec([None], tf.float32)))
|
|
def call(self, x, y):
|
|
with tf.GradientTape() as tape:
|
|
loss = tf.math.reduce_mean((self.dense(x) - y) ** 2.)
|
|
trainable_variables = self.trainable_variables
|
|
gradients = tape.gradient(loss, trainable_variables)
|
|
self.optimizer.apply_gradients(zip(gradients, trainable_variables))
|
|
return {'loss': loss}
|
|
|
|
|
|
class FunctionTest(tf.test.TestCase):
|
|
|
|
def testFunctionRelaxationLosesInnerDimWithKerasLayer(self):
|
|
layer = tf.keras.layers.Dense(1)
|
|
fn = tf.function(experimental_relax_shapes=True)(layer)
|
|
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
fn(tf.ones((3, 2)))
|
|
self.assertNotIn('ValueError', printed.contents())
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
# Use batch size 2 to trigger a second cache miss on the shape.
|
|
fn(tf.ones((2, 2)))
|
|
self.assertNotIn('ValueError', printed.contents())
|
|
|
|
# Shape relaxation passes TensorShape([None, None]), which causes layer
|
|
# matmul to fail, due to incompatible dims. What would have been a graph
|
|
# build time error (layer would complain about the inner dim being 4).
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
with self.assertRaisesRegex(tf.errors.InvalidArgumentError,
|
|
r'Matrix size-incompatible'):
|
|
fn(tf.ones((3, 4)))
|
|
|
|
def testDefunKerasModelCall(self):
|
|
model = MiniModel()
|
|
model.call = tf.function(model.call)
|
|
|
|
x = tf.ones([1, 2])
|
|
y = model(x) # pylint:disable=not-callable
|
|
|
|
self.assertAllEqual([[3.0]], self.evaluate(y))
|
|
|
|
# Break the reference cycle between the MiniModel and the defun:
|
|
# `MiniModel` --(through its `call` method)--> `Function`
|
|
# `Function` --(instancemethod on `MiniModel`)--> `MiniModel`
|
|
del model.call
|
|
|
|
def testDecoratedMethod(self):
|
|
m = DefunnedMiniModel()
|
|
instance_call_one = m.call(tf.ones([1, 2]), training=True)
|
|
instance_call_two = m.call(
|
|
inputs=tf.ones([1, 2]), training=True)
|
|
class_call = DefunnedMiniModel.call(m, tf.ones([1, 2]), training=True)
|
|
self.assertAllEqual(instance_call_one, instance_call_two)
|
|
self.assertAllEqual(instance_call_one, class_call)
|
|
|
|
def testDecoratedMethodUniqueFunctionPerInstance(self):
|
|
m = DefunnedMiniModel()
|
|
n = DefunnedMiniModel()
|
|
|
|
class_method_one = DefunnedMiniModel.call
|
|
class_method_two = DefunnedMiniModel.call
|
|
|
|
m_method_one = m.call
|
|
m_method_two = m.call
|
|
|
|
n_method_one = n.call
|
|
n_method_two = n.call
|
|
|
|
self.assertEqual(class_method_one, class_method_two)
|
|
self.assertEqual(m_method_one, m_method_two)
|
|
self.assertEqual(n_method_one, n_method_two)
|
|
self.assertNotEqual(m.call, n.call)
|
|
|
|
def testDecoratedMethodGetConcreteFunction(self):
|
|
m = DefunnedMiniModel()
|
|
instance_call_one = m.call.get_concrete_function(
|
|
tf.ones([1, 2]), training=False)
|
|
instance_call_two = m.call.get_concrete_function(
|
|
inputs=tf.ones([1, 2]), training=False)
|
|
self.assertAllEqual(instance_call_one(tf.ones([1, 2])),
|
|
instance_call_two(tf.ones([1, 2])))
|
|
|
|
# Also make sure get_concrete_function works on the class method
|
|
DefunnedMiniModel.call.get_concrete_function(
|
|
m, tf.ones([1, 2]), training=False)
|
|
DefunnedMiniModel.call.get_concrete_function(
|
|
m, inputs=tf.ones([1, 2]), training=True)
|
|
|
|
def testDecoratedMethodVariableCleanup(self):
|
|
m = DefunnedMiniModel()
|
|
m(tf.ones([1, 2])) # pylint:disable=not-callable
|
|
variable_refs = list({v.ref() for v in m.variables})
|
|
self.assertLen(variable_refs, 2)
|
|
del m
|
|
|
|
# Verifying if the variables are only referenced from variable_refs.
|
|
# We expect the reference counter to be 1, but `sys.getrefcount` reports
|
|
# one higher reference counter because a temporary is created when we call
|
|
# sys.getrefcount(). Hence check if the number returned is 2.
|
|
# https://docs.python.org/3/library/sys.html#sys.getrefcount
|
|
self.assertEqual(sys.getrefcount(variable_refs[0].deref()), 2)
|
|
self.assertEqual(sys.getrefcount(variable_refs[1].deref()), 2)
|
|
|
|
def testStandardTrainingLoopInFunction(self):
|
|
layer = tf.keras.layers.Dense(2)
|
|
dataset = (
|
|
tf.data.Dataset.from_tensors((tf.ones([784]), tf.ones([], tf.int32)))
|
|
.map(lambda x, y: (x, y))
|
|
.repeat(10)
|
|
.batch(32))
|
|
optimizer = tf.keras.optimizers.Adam()
|
|
|
|
@tf.function
|
|
def train():
|
|
for x, y in dataset:
|
|
with tf.GradientTape() as tape:
|
|
out = layer(x)
|
|
loss = tf.reduce_mean(
|
|
tf.nn.sparse_softmax_cross_entropy_with_logits(
|
|
logits=out, labels=y))
|
|
layer_variables = layer.trainable_variables
|
|
gradients = tape.gradient(loss, layer_variables)
|
|
optimizer.apply_gradients(zip(gradients, layer_variables))
|
|
|
|
train()
|
|
|
|
def testEarlyStoppingTrainingLoopInFunction(self):
|
|
layer = tf.keras.layers.Dense(2)
|
|
dataset = (
|
|
tf.data.Dataset.from_tensors((tf.ones([784]), tf.ones([], tf.int32)))
|
|
.map(lambda x, y: (x, y))
|
|
.repeat(10)
|
|
.batch(32))
|
|
optimizer = tf.keras.optimizers.Adam()
|
|
|
|
@tf.function
|
|
def train():
|
|
for x, y in dataset:
|
|
with tf.GradientTape() as tape:
|
|
out = layer(x)
|
|
loss = tf.math.reduce_mean(
|
|
tf.nn.sparse_softmax_cross_entropy_with_logits(
|
|
logits=out, labels=y))
|
|
layer_variables = layer.trainable_variables
|
|
gradients = tape.gradient(loss, layer_variables)
|
|
optimizer.apply_gradients(zip(gradients, layer_variables))
|
|
if optimizer.iterations > 3:
|
|
break
|
|
|
|
train()
|
|
|
|
def test_optimizer(self):
|
|
x = tf.constant([[3., 4.]])
|
|
y = tf.constant([2.])
|
|
model = ModelWithOptimizer()
|
|
model(x, y) # pylint:disable=not-callable
|
|
|
|
|
|
class AutomaticControlDependenciesTest(tf.test.TestCase):
|
|
|
|
def testVariableInitializersCanBeLifted(self):
|
|
# The initializer is a stateful op, but using it inside a function should
|
|
# *not* create additional dependencies. That's what we're testing.
|
|
layer = tf.keras.layers.Dense(1, kernel_initializer='glorot_uniform')
|
|
|
|
@tf.function
|
|
def fn(x):
|
|
# Stateful operation
|
|
tf.debugging.Assert(x, ['Error'])
|
|
# Variable initialization should be lifted. Prior to the change that
|
|
# added this test, the lifting would crash because of an auto control dep
|
|
# added on `x`. Note, the error did not happen if we
|
|
# manually created a tf.Variable outside of function and used it
|
|
# here. Alternatively, creating a tf.Variable inside fn() causes
|
|
# a different sort of error that is out of scope for this test.
|
|
return layer(tf.convert_to_tensor([[1.0, 1.0]]))
|
|
|
|
true = tf.convert_to_tensor(True)
|
|
|
|
concrete = fn.get_concrete_function(
|
|
tf.TensorSpec(shape=(), dtype=tf.bool))
|
|
self.evaluate(concrete(true))
|
|
self.evaluate(fn(True))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|