STT-tensorflow/tensorflow/python/keras/engine/sequential_test.py
Thomas O'Malley 3fd34b6ac3 Support tf.Modules in keras.Sequential.
Adds a private ModuleWrapper class that wraps the tf.Module that the user
passes to keras.Sequential. keras.Sequential models created in this way support
SavedModel saving, but do not support HDF5 saving format.

PiperOrigin-RevId: 342340478
Change-Id: I0f9d44b3d73fa00bed4f3c474750269b9ec10fb0
2020-11-13 14:47:31 -08:00

580 lines
19 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests specific to `Sequential` model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.module import module
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
class TestSequential(keras_parameterized.TestCase):
"""Most Sequential model API tests are covered in `training_test.py`.
"""
@keras_parameterized.run_all_keras_modes
def test_basic_methods(self):
model = keras.models.Sequential()
model.add(keras.layers.Dense(1, input_dim=2))
model.add(keras.layers.Dropout(0.3, name='dp'))
model.add(keras.layers.Dense(2, kernel_regularizer='l2',
kernel_constraint='max_norm'))
self.assertEqual(len(model.layers), 3)
self.assertEqual(len(model.weights), 2 * 2)
self.assertEqual(model.get_layer(name='dp').name, 'dp')
@keras_parameterized.run_all_keras_modes
def test_input_defined_first_layer(self):
model = keras.models.Sequential()
model.add(keras.Input(shape=(2,), name='input_layer'))
model.add(keras.layers.Dense(1))
model.add(keras.layers.Dropout(0.3, name='dp'))
model.add(keras.layers.Dense(2, kernel_regularizer='l2',
kernel_constraint='max_norm'))
self.assertLen(model.layers, 3)
self.assertLen(model.weights, 2 * 2)
self.assertEqual(model.get_layer(name='dp').name, 'dp')
@keras_parameterized.run_all_keras_modes
def test_single_layer_in_init(self):
model = keras.models.Sequential(keras.layers.Dense(1))
self.assertLen(model.layers, 1)
@keras_parameterized.run_all_keras_modes
def test_sequential_pop(self):
num_hidden = 5
input_dim = 3
batch_size = 5
num_classes = 2
model = testing_utils.get_small_sequential_mlp(
num_hidden, num_classes, input_dim)
model.compile(
loss='mse',
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
x = np.random.random((batch_size, input_dim))
y = np.random.random((batch_size, num_classes))
model.fit(x, y, epochs=1)
model.pop()
self.assertEqual(len(model.layers), 1)
self.assertEqual(model.output_shape, (None, num_hidden))
model.compile(
loss='mse',
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
y = np.random.random((batch_size, num_hidden))
model.fit(x, y, epochs=1)
# Test popping single-layer model
model = keras.models.Sequential()
model.add(keras.layers.Dense(num_hidden, input_dim=input_dim))
model.pop()
self.assertEqual(model.layers, [])
self.assertEqual(model.outputs, None)
# Invalid use case
model = keras.models.Sequential()
with self.assertRaises(TypeError):
model.pop()
@keras_parameterized.run_all_keras_modes
def test_sequential_deferred_build_with_np_arrays(self):
num_hidden = 5
input_dim = 3
batch_size = 5
num_classes = 2
model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes)
model.compile(
loss='mse',
optimizer='rmsprop',
metrics=[keras.metrics.CategoricalAccuracy()],
run_eagerly=testing_utils.should_run_eagerly())
self.assertEqual(len(model.layers), 2)
with self.assertRaisesRegex(
ValueError, 'Weights for model .* have not yet been created'):
len(model.weights)
self.assertFalse(model.built)
x = np.random.random((batch_size, input_dim))
y = np.random.random((batch_size, num_classes))
model.fit(x, y, epochs=1)
self.assertTrue(model.built)
self.assertEqual(len(model.weights), 2 * 2)
@keras_parameterized.run_all_keras_modes
def test_sequential_deferred_build_with_dataset_iterators(self):
num_hidden = 5
input_dim = 3
num_classes = 2
num_samples = 50
steps_per_epoch = 10
model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes)
model.compile(
loss='mse',
optimizer='rmsprop',
metrics=[keras.metrics.CategoricalAccuracy()],
run_eagerly=testing_utils.should_run_eagerly())
self.assertEqual(len(model.layers), 2)
with self.assertRaisesRegex(
ValueError, 'Weights for model .* have not yet been created'):
len(model.weights)
self.assertFalse(model.built)
x = array_ops.ones((num_samples, input_dim))
y = array_ops.zeros((num_samples, num_classes))
dataset = dataset_ops.Dataset.from_tensor_slices((x, y))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=steps_per_epoch)
self.assertTrue(model.built)
self.assertEqual(len(model.weights), 2 * 2)
# TODO(kaftan) This test fails w/ run_with_all_keras_modes. File ticket
@parameterized.parameters((True,), (False,))
def test_training_and_eval_methods_on_symbolic_tensors(self, deferred):
with ops.Graph().as_default(), self.cached_session():
def get_model():
if deferred:
model = testing_utils.get_small_sequential_mlp(10, 4)
else:
model = testing_utils.get_small_sequential_mlp(10, 4, input_dim=3)
model.compile(
optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
inputs = keras.backend.zeros(shape=(10, 3))
targets = keras.backend.zeros(shape=(10, 4))
model = get_model()
model.fit(inputs, targets, epochs=10, steps_per_epoch=30)
model = get_model()
model.evaluate(inputs, targets, steps=2, verbose=0)
model = get_model()
model.predict(inputs, steps=2)
model = get_model()
model.train_on_batch(inputs, targets)
model = get_model()
model.test_on_batch(inputs, targets)
model = get_model()
model.fit(
inputs,
targets,
epochs=1,
steps_per_epoch=2,
verbose=0,
validation_data=(inputs, targets),
validation_steps=2)
@keras_parameterized.run_all_keras_modes
def test_invalid_use_cases(self):
# Added objects must be layer instances
with self.assertRaises(TypeError):
model = keras.models.Sequential()
model.add(None)
@keras_parameterized.run_all_keras_modes
def test_nested_sequential_trainability(self):
input_dim = 20
num_units = 10
num_classes = 2
inner_model = keras.models.Sequential()
inner_model.add(keras.layers.Dense(num_units, input_shape=(input_dim,)))
model = keras.models.Sequential()
model.add(inner_model)
model.add(keras.layers.Dense(num_classes))
self.assertEqual(len(model.layers), 2)
self.assertEqual(len(model.trainable_weights), 4)
inner_model.trainable = False
self.assertEqual(len(model.trainable_weights), 2)
inner_model.trainable = True
self.assertEqual(len(model.trainable_weights), 4)
@keras_parameterized.run_all_keras_modes
def test_sequential_update_disabling(self):
val_a = np.random.random((10, 4))
val_out = np.random.random((10, 4))
model = keras.models.Sequential()
model.add(keras.layers.BatchNormalization(input_shape=(4,)))
model.trainable = False
model.compile('sgd', 'mse')
x1 = model.predict(val_a)
model.train_on_batch(val_a, val_out)
x2 = model.predict(val_a)
self.assertAllClose(x1, x2, atol=1e-7)
model.trainable = True
model.compile('sgd', 'mse')
model.train_on_batch(val_a, val_out)
x2 = model.predict(val_a)
assert np.abs(np.sum(x1 - x2)) > 1e-5
@keras_parameterized.run_all_keras_modes
def test_sequential_deferred_build_serialization(self):
num_hidden = 5
input_dim = 3
batch_size = 5
num_classes = 2
model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes)
model.compile(
loss='mse',
optimizer='rmsprop',
metrics=[keras.metrics.CategoricalAccuracy()],
run_eagerly=testing_utils.should_run_eagerly())
self.assertFalse(model.built)
x = np.random.random((batch_size, input_dim))
y = np.random.random((batch_size, num_classes))
model.train_on_batch(x, y)
self.assertTrue(model.built)
config = model.get_config()
new_model = keras.models.Sequential.from_config(config)
new_model.compile(
loss='mse',
optimizer='rmsprop',
metrics=[keras.metrics.CategoricalAccuracy()],
run_eagerly=testing_utils.should_run_eagerly())
x = np.random.random((batch_size, input_dim))
y = np.random.random((batch_size, num_classes))
new_model.train_on_batch(x, y)
self.assertEqual(len(new_model.layers), 2)
self.assertEqual(len(new_model.weights), 4)
@keras_parameterized.run_all_keras_modes
def test_sequential_shape_inference_deferred(self):
model = testing_utils.get_small_sequential_mlp(4, 5)
output_shape = model.compute_output_shape((None, 7))
self.assertEqual(tuple(output_shape.as_list()), (None, 5))
@keras_parameterized.run_all_keras_modes
def test_sequential_build_deferred(self):
model = testing_utils.get_small_sequential_mlp(4, 5)
model.build((None, 10))
self.assertTrue(model.built)
self.assertEqual(len(model.weights), 4)
# Test with nested model
model = testing_utils.get_small_sequential_mlp(4, 3)
inner_model = testing_utils.get_small_sequential_mlp(4, 5)
model.add(inner_model)
model.build((None, 10))
self.assertTrue(model.built)
self.assertEqual(len(model.weights), 8)
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_sequential_deferred_manual_build(self):
model = testing_utils.get_small_sequential_mlp(4, 5)
self.assertFalse(model.built)
model(array_ops.zeros([1, 2]))
self.assertTrue(model.built)
model.compile(
'rmsprop',
loss='mse',
run_eagerly=testing_utils.should_run_eagerly())
model.train_on_batch(np.zeros((1, 2)), np.zeros((1, 5)))
@keras_parameterized.run_all_keras_modes
def test_sequential_nesting(self):
model = testing_utils.get_small_sequential_mlp(4, 3)
inner_model = testing_utils.get_small_sequential_mlp(4, 5)
model.add(inner_model)
model.compile(
loss='mse',
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
x = np.random.random((2, 6))
y = np.random.random((2, 5))
model.fit(x, y, epochs=1)
@test_util.run_v1_only('Behavior changed in V2.')
def test_variable_names_deferred(self):
model = keras.models.Sequential([keras.layers.Dense(3)])
model.add(keras.layers.Dense(2))
model(array_ops.ones([2, 4]))
# Note that for regular sequential models (wrapping graph network),
# the layers' weights are built
# without the model name as prefix (because the Functional API __call__
# reset the name scope). This is fixable, but it would be
# backwards incompatible.
self.assertEqual(
['sequential/dense/kernel:0', 'sequential/dense/bias:0',
'sequential/dense_1/kernel:0', 'sequential/dense_1/bias:0'],
[v.name for v in model.variables])
@keras_parameterized.run_all_keras_modes
def test_input_assumptions_propagation(self):
model = keras.models.Sequential()
model.add(keras.layers.Dense(1))
if context.executing_eagerly():
with self.assertRaisesRegex(ValueError,
'expected min_ndim=2, found ndim=0'):
model(1.0)
@keras_parameterized.run_all_keras_modes
def test_string_input(self):
seq = keras.Sequential([
keras.layers.InputLayer(input_shape=(1,), dtype=dtypes.string),
keras.layers.Lambda(lambda x: x[0])
])
seq.run_eagerly = testing_utils.should_run_eagerly()
preds = seq.predict([['tensorflow eager']])
self.assertEqual(preds.shape, (1,))
@keras_parameterized.run_all_keras_modes
def test_multi_output_layer_not_accepted(self):
class MultiOutputLayer(keras.layers.Layer):
def call(self, inputs):
return inputs, inputs
with self.assertRaisesRegex(ValueError,
'should have a single output tensor'):
keras.Sequential([MultiOutputLayer(input_shape=(3,))])
with self.assertRaisesRegex(ValueError,
'should have a single output tensor'):
keras.Sequential([
keras.layers.Dense(1, input_shape=(3,)),
MultiOutputLayer()])
# Should also raise error in a deferred build mode
with self.assertRaisesRegex(ValueError,
'should have a single output tensor'):
keras.Sequential([MultiOutputLayer()])(np.zeros((10, 10)))
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_layer_add_after_compile_deferred(self):
model = keras.Sequential([keras.layers.Dense(3)])
self.assertFalse(model.built)
model.compile('adam', loss='mse')
model.fit(np.random.random((1, 3)), np.random.random((1, 3)))
self.assertTrue(model.built)
model.add(keras.layers.Dense(3))
model.compile('adam', loss='mse')
model.fit(np.random.random((1, 3)), np.random.random((1, 3)))
self.assertTrue(model.built)
def test_sequential_layer_tracking(self):
"""Test that Sequential only tracks layers added in init or `.add`."""
layer = keras.layers.Dense(1)
model = keras.Sequential([layer])
self.assertEqual(
list(model._flatten_layers(include_self=False, recursive=False))[-1],
layer)
model.a = [keras.layers.Dense(3)] # should not be added to the layers list.
self.assertEqual(
list(model._flatten_layers(include_self=False, recursive=False))[-1],
layer)
layer2 = keras.layers.Dense(2)
model.add(layer2)
self.assertEqual(
list(model._flatten_layers(include_self=False, recursive=False))[-1],
layer2)
model.a = [keras.layers.Dense(3)] # should not be added to the layers list.
self.assertEqual(
list(model._flatten_layers(include_self=False, recursive=False))[-1],
layer2)
model.pop()
self.assertEqual(
list(model._flatten_layers(include_self=False, recursive=False))[-1],
layer)
def test_config_preserves_input_layer(self):
model = keras.Sequential([
keras.Input((None,), name='my_embedding_input', dtype='int32'),
keras.layers.Embedding(32, 32),
keras.layers.Dense(3),
])
config = model.get_config()
new_model = keras.Sequential.from_config(config)
self.assertTrue(new_model.built)
layers = list(
new_model._flatten_layers(include_self=False, recursive=False))
self.assertEqual(layers[0].dtype, 'int32')
self.assertEqual(layers[0].name, 'my_embedding_input')
def test_name_unicity(self):
model = keras.Sequential()
model.add(keras.layers.Dense(3, name='specific_name'))
with self.assertRaisesRegex(ValueError, 'should have unique names'):
model.add(keras.layers.Dense(3, name='specific_name'))
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_tf_module_call(self):
class MyModule(module.Module):
def __init__(self):
self.v = variables.Variable(2.)
def __call__(self, x):
return self.v * x
model = keras.Sequential()
model.add(MyModule())
model.compile('sgd', 'mse')
x, y = np.ones((10, 1)), np.ones((10, 1))
model.fit(x, y, batch_size=2)
self.assertLen(model.trainable_variables, 1)
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_tf_module_training(self):
class MyModule(module.Module):
def __init__(self):
self.v = variables.Variable(2.)
def call(self, x, training=None):
# training should be set by Sequential.
assert training is not None
return self.v * x
model = keras.Sequential()
model.add(MyModule())
model.compile('sgd', 'mse')
x, y = np.ones((10, 1)), np.ones((10, 1))
model.fit(x, y, batch_size=2)
self.assertLen(model.trainable_variables, 1)
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_tf_module_error(self):
class MyModule(module.Module):
def __init__(self):
self.v = variables.Variable(2.)
model = keras.Sequential()
with self.assertRaisesRegex(ValueError, 'is not defined'):
model.add(MyModule())
class TestSequentialEagerIntegration(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_defun_on_call(self):
# Check that one can subclass Sequential and place the `call` in a `defun`.
class MySequential(keras.Sequential):
def __init__(self, name=None):
super(MySequential, self).__init__(name=name)
self.call = def_function.function(self.call)
model = MySequential()
model.add(keras.layers.Dense(4, activation='relu'))
model.add(keras.layers.Dense(5, activation='softmax'))
model.compile(
loss='mse',
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
x = np.random.random((2, 6))
y = np.random.random((2, 5))
model.fit(x, y, epochs=1)
@keras_parameterized.run_all_keras_modes
def test_build_before_fit(self):
# Fix for b/112433577
model = testing_utils.get_small_sequential_mlp(4, 5)
model.compile(
loss='mse',
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
model.build((None, 6))
x = np.random.random((2, 6))
y = np.random.random((2, 5))
model.fit(x, y, epochs=1)
@keras_parameterized.run_all_keras_modes
def test_build_empty_network(self):
x = np.random.random((2, 6))
y = np.random.random((2, 5))
model = keras.Sequential()
# Make sure an empty sequential model can still work with build().
model.build((None, 6))
self.assertTrue(model.built)
model.add(keras.layers.Dense(5, input_shape=(6,)))
model.compile(
loss='mse',
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
model.fit(x, y)
model.pop()
self.assertFalse(model.built)
model.build((None, 6))
self.assertTrue(model.built)
if __name__ == '__main__':
test.main()