The keras.Input() is designed for functional model, and might cause some use confusion when calling model.summary() or plot the model. See https://github.com/tensorflow/tensorflow/issues/45437 for more information. PiperOrigin-RevId: 346877064 Change-Id: I20264fc966e9651c24a7a99b65173ad7e814fc1e
579 lines
23 KiB
Python
579 lines
23 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# pylint: disable=protected-access
|
|
"""Home of the `Sequential` model.
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
import warnings
|
|
|
|
from tensorflow.python import tf2
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_util
|
|
from tensorflow.python.keras import layers as layer_module
|
|
from tensorflow.python.keras.engine import base_layer
|
|
from tensorflow.python.keras.engine import functional
|
|
from tensorflow.python.keras.engine import input_layer
|
|
from tensorflow.python.keras.engine import training_utils
|
|
from tensorflow.python.keras.saving.saved_model import model_serialization
|
|
from tensorflow.python.keras.utils import generic_utils
|
|
from tensorflow.python.keras.utils import layer_utils
|
|
from tensorflow.python.keras.utils import tf_inspect
|
|
from tensorflow.python.keras.utils import tf_utils
|
|
from tensorflow.python.module import module
|
|
from tensorflow.python.ops.numpy_ops import np_arrays
|
|
from tensorflow.python.platform import tf_logging as logging
|
|
from tensorflow.python.training.tracking import base as trackable
|
|
from tensorflow.python.util import nest
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
SINGLE_LAYER_OUTPUT_ERROR_MSG = ('All layers in a Sequential model should have '
|
|
'a single output tensor. For multi-output '
|
|
'layers, use the functional API.')
|
|
|
|
|
|
@keras_export('keras.Sequential', 'keras.models.Sequential')
|
|
class Sequential(functional.Functional):
|
|
"""`Sequential` groups a linear stack of layers into a `tf.keras.Model`.
|
|
|
|
`Sequential` provides training and inference features on this model.
|
|
|
|
Examples:
|
|
|
|
>>> # Optionally, the first layer can receive an `input_shape` argument:
|
|
>>> model = tf.keras.Sequential()
|
|
>>> model.add(tf.keras.layers.Dense(8, input_shape=(16,)))
|
|
>>> # Afterwards, we do automatic shape inference:
|
|
>>> model.add(tf.keras.layers.Dense(4))
|
|
|
|
>>> # This is identical to the following:
|
|
>>> model = tf.keras.Sequential()
|
|
>>> model.add(tf.keras.Input(shape=(16,)))
|
|
>>> model.add(tf.keras.layers.Dense(8))
|
|
|
|
>>> # Note that you can also omit the `input_shape` argument.
|
|
>>> # In that case the model doesn't have any weights until the first call
|
|
>>> # to a training/evaluation method (since it isn't yet built):
|
|
>>> model = tf.keras.Sequential()
|
|
>>> model.add(tf.keras.layers.Dense(8))
|
|
>>> model.add(tf.keras.layers.Dense(4))
|
|
>>> # model.weights not created yet
|
|
|
|
>>> # Whereas if you specify the input shape, the model gets built
|
|
>>> # continuously as you are adding layers:
|
|
>>> model = tf.keras.Sequential()
|
|
>>> model.add(tf.keras.layers.Dense(8, input_shape=(16,)))
|
|
>>> model.add(tf.keras.layers.Dense(4))
|
|
>>> len(model.weights)
|
|
4
|
|
|
|
>>> # When using the delayed-build pattern (no input shape specified), you can
|
|
>>> # choose to manually build your model by calling
|
|
>>> # `build(batch_input_shape)`:
|
|
>>> model = tf.keras.Sequential()
|
|
>>> model.add(tf.keras.layers.Dense(8))
|
|
>>> model.add(tf.keras.layers.Dense(4))
|
|
>>> model.build((None, 16))
|
|
>>> len(model.weights)
|
|
4
|
|
|
|
```python
|
|
# Note that when using the delayed-build pattern (no input shape specified),
|
|
# the model gets built the first time you call `fit`, `eval`, or `predict`,
|
|
# or the first time you call the model on some input data.
|
|
model = tf.keras.Sequential()
|
|
model.add(tf.keras.layers.Dense(8))
|
|
model.add(tf.keras.layers.Dense(1))
|
|
model.compile(optimizer='sgd', loss='mse')
|
|
# This builds the model for the first time:
|
|
model.fit(x, y, batch_size=32, epochs=10)
|
|
```
|
|
"""
|
|
|
|
@trackable.no_automatic_dependency_tracking
|
|
def __init__(self, layers=None, name=None):
|
|
"""Creates a `Sequential` model instance.
|
|
|
|
Args:
|
|
layers: Optional list of layers to add to the model.
|
|
name: Optional name for the model.
|
|
"""
|
|
# Skip the init in FunctionalModel since model doesn't have input/output yet
|
|
super(functional.Functional, self).__init__( # pylint: disable=bad-super-call
|
|
name=name, autocast=False)
|
|
base_layer.keras_api_gauge.get_cell('Sequential').set(True)
|
|
self.supports_masking = True
|
|
self._compute_output_and_mask_jointly = True
|
|
self._auto_track_sub_layers = False
|
|
self._inferred_input_shape = None
|
|
self._has_explicit_input_shape = False
|
|
self._input_dtype = None
|
|
self._layer_call_argspecs = {}
|
|
self._created_nodes = set()
|
|
# Flag that indicate whether the sequential network topology has been
|
|
# created. It is false when there isn't any layer, or the layers doesn't
|
|
# have input shape.
|
|
self._graph_initialized = False
|
|
|
|
# Unfortunately some Sequential models using custom layers or FeatureColumn
|
|
# layers have multiple inputs. This is fundamentally incompatible with
|
|
# most of the Sequential API, and we have to disable a number of features
|
|
# for such models.
|
|
self._use_legacy_deferred_behavior = False
|
|
|
|
# Add to the model any layers passed to the constructor.
|
|
if layers:
|
|
if not isinstance(layers, (list, tuple)):
|
|
layers = [layers]
|
|
for layer in layers:
|
|
self.add(layer)
|
|
|
|
@property
|
|
def layers(self):
|
|
# Historically, `sequential.layers` only returns layers that were added
|
|
# via `add`, and omits the auto-generated `InputLayer` that comes at the
|
|
# bottom of the stack.
|
|
# `Trackable` manages the `_layers` attributes and does filtering
|
|
# over it.
|
|
layers = super(Sequential, self).layers
|
|
if layers and isinstance(layers[0], input_layer.InputLayer):
|
|
return layers[1:]
|
|
return layers[:]
|
|
|
|
@trackable.no_automatic_dependency_tracking
|
|
def add(self, layer):
|
|
"""Adds a layer instance on top of the layer stack.
|
|
|
|
Arguments:
|
|
layer: layer instance.
|
|
|
|
Raises:
|
|
TypeError: If `layer` is not a layer instance.
|
|
ValueError: In case the `layer` argument does not
|
|
know its input shape.
|
|
ValueError: In case the `layer` argument has
|
|
multiple output tensors, or is already connected
|
|
somewhere else (forbidden in `Sequential` models).
|
|
"""
|
|
# If we are passed a Keras tensor created by keras.Input(), we can extract
|
|
# the input layer from its keras history and use that without any loss of
|
|
# generality.
|
|
if hasattr(layer, '_keras_history'):
|
|
origin_layer = layer._keras_history[0]
|
|
if isinstance(origin_layer, input_layer.InputLayer):
|
|
layer = origin_layer
|
|
logging.warning(
|
|
'Please add `keras.layers.InputLayer` instead of `keras.Input` to '
|
|
'Sequential model. `keras.Input` is intended to be used by '
|
|
'Functional model.')
|
|
|
|
if isinstance(layer, module.Module):
|
|
if not isinstance(layer, base_layer.Layer):
|
|
layer = functional.ModuleWrapper(layer)
|
|
else:
|
|
raise TypeError('The added layer must be '
|
|
'an instance of class Layer. '
|
|
'Found: ' + str(layer))
|
|
|
|
tf_utils.assert_no_legacy_layers([layer])
|
|
if not self._is_layer_name_unique(layer):
|
|
raise ValueError('All layers added to a Sequential model '
|
|
'should have unique names. Name "%s" is already the name'
|
|
' of a layer in this model. Update the `name` argument '
|
|
'to pass a unique name.' % (layer.name,))
|
|
|
|
self.built = False
|
|
set_inputs = False
|
|
self._maybe_create_attribute('_self_tracked_trackables', [])
|
|
if not self._self_tracked_trackables:
|
|
if isinstance(layer, input_layer.InputLayer):
|
|
# Case where the user passes an Input or InputLayer layer via `add`.
|
|
set_inputs = True
|
|
else:
|
|
batch_shape, dtype = training_utils.get_input_shape_and_dtype(layer)
|
|
if batch_shape:
|
|
# Instantiate an input layer.
|
|
x = input_layer.Input(
|
|
batch_shape=batch_shape, dtype=dtype, name=layer.name + '_input')
|
|
# This will build the current layer
|
|
# and create the node connecting the current layer
|
|
# to the input layer we just created.
|
|
layer(x)
|
|
set_inputs = True
|
|
|
|
if set_inputs:
|
|
outputs = nest.flatten(layer._inbound_nodes[-1].outputs)
|
|
if len(outputs) != 1:
|
|
raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG)
|
|
self.outputs = outputs
|
|
self.inputs = layer_utils.get_source_inputs(self.outputs[0])
|
|
self.built = True
|
|
self._has_explicit_input_shape = True
|
|
|
|
elif self.outputs:
|
|
# If the model is being built continuously on top of an input layer:
|
|
# refresh its output.
|
|
output_tensor = layer(self.outputs[0])
|
|
if len(nest.flatten(output_tensor)) != 1:
|
|
raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG)
|
|
self.outputs = [output_tensor]
|
|
self.built = True
|
|
|
|
if set_inputs or self._graph_initialized:
|
|
self._init_graph_network(self.inputs, self.outputs)
|
|
self._graph_initialized = True
|
|
else:
|
|
self._self_tracked_trackables.append(layer)
|
|
self._handle_deferred_layer_dependencies([layer])
|
|
|
|
self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call)
|
|
|
|
@trackable.no_automatic_dependency_tracking
|
|
def pop(self):
|
|
"""Removes the last layer in the model.
|
|
|
|
Raises:
|
|
TypeError: if there are no layers in the model.
|
|
"""
|
|
if not self.layers:
|
|
raise TypeError('There are no layers in the model.')
|
|
|
|
layer = self._self_tracked_trackables.pop()
|
|
self._layer_call_argspecs.pop(layer)
|
|
if not self.layers:
|
|
self.outputs = None
|
|
self.inputs = None
|
|
self.built = False
|
|
self._inferred_input_shape = None
|
|
self._has_explicit_input_shape = False
|
|
self._graph_initialized = False
|
|
elif self._graph_initialized:
|
|
self.layers[-1]._outbound_nodes = []
|
|
self.outputs = [self.layers[-1].output]
|
|
self._init_graph_network(self.inputs, self.outputs)
|
|
self.built = True
|
|
|
|
@trackable.no_automatic_dependency_tracking
|
|
def _build_graph_network_for_inferred_shape(self,
|
|
input_shape,
|
|
input_dtype=None):
|
|
if input_shape is None or not self.layers:
|
|
return
|
|
if not tf2.enabled() or not ops.executing_eagerly_outside_functions():
|
|
# This behavior is disabled in V1 or when eager execution is disabled.
|
|
return
|
|
if (not self._has_explicit_input_shape and
|
|
not self._use_legacy_deferred_behavior):
|
|
# Determine whether the input shape is novel, i.e. whether the model
|
|
# should be rebuilt.
|
|
input_shape = tuple(input_shape)
|
|
if self._inferred_input_shape is None:
|
|
new_shape = input_shape
|
|
else:
|
|
new_shape = relax_input_shape(self._inferred_input_shape, input_shape)
|
|
if (new_shape is not None and new_shape != self._inferred_input_shape):
|
|
# A novel shape has been received: we need to rebuild the model.
|
|
# In case we are inside a graph function, we step out of it.
|
|
with ops.init_scope():
|
|
inputs = input_layer.Input(
|
|
batch_shape=new_shape,
|
|
dtype=input_dtype,
|
|
name=self.layers[0].name + '_input')
|
|
layer_input = inputs
|
|
created_nodes = set()
|
|
for layer in self.layers:
|
|
# Clear nodes previously created via this method. This prevents
|
|
# node accumulation and ensures that e.g. `layer.output` is
|
|
# always connected to `model.inputs`
|
|
# (this is important e.g. for the feature extraction use case).
|
|
# We don't just do `layer._inbound_nodes = []` in order
|
|
# not to break shared layers added to Sequential models (which is
|
|
# technically illegal as per the `add()` docstring,
|
|
# but wasn't previously disabled).
|
|
clear_previously_created_nodes(layer, self._created_nodes)
|
|
try:
|
|
# Create Functional API connection by calling the current layer
|
|
layer_output = layer(layer_input)
|
|
except: # pylint:disable=bare-except
|
|
# Functional API calls may fail for a number of reasons:
|
|
# 1) The layer may be buggy. In this case it will be easier for
|
|
# the user to debug if we fail on the first call on concrete data,
|
|
# instead of our own call on a symbolic input.
|
|
# 2) The layer is dynamic (graph-incompatible) and hasn't
|
|
# overridden `compute_output_shape`. In this case, it is
|
|
# impossible to build a graph network.
|
|
# 3) The layer is otherwise incompatible with the Functional API
|
|
# (e.g. this is the case for some probabilistic layers that rely
|
|
# on hacks and that do not return tensors).
|
|
# In all these cases, we should avoid creating a graph network
|
|
# (or we simply can't).
|
|
self._use_legacy_deferred_behavior = True
|
|
return
|
|
if len(nest.flatten(layer_output)) != 1:
|
|
raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG)
|
|
# Keep track of nodes just created above
|
|
track_nodes_created_by_last_call(layer, created_nodes)
|
|
layer_input = layer_output
|
|
outputs = layer_output
|
|
self._created_nodes = created_nodes
|
|
try:
|
|
# Initialize a graph Network. This call will never fail for
|
|
# a stack of valid Keras layers.
|
|
# However some users have layers that are fundamentally incompatible
|
|
# with the Functional API, which do not return tensors. In this
|
|
# case, we fall back to the legacy deferred behavior.
|
|
# TODO(fchollet): consider raising here, as we should not be
|
|
# supporting such layers.
|
|
self._init_graph_network(inputs, outputs)
|
|
self._graph_initialized = True
|
|
except: # pylint:disable=bare-except
|
|
self._use_legacy_deferred_behavior = True
|
|
self._inferred_input_shape = new_shape
|
|
|
|
@generic_utils.default
|
|
def build(self, input_shape=None):
|
|
if self._graph_initialized:
|
|
self._init_graph_network(self.inputs, self.outputs)
|
|
else:
|
|
if input_shape is None:
|
|
raise ValueError('You must provide an `input_shape` argument.')
|
|
self._build_graph_network_for_inferred_shape(input_shape)
|
|
if not self.built:
|
|
input_shape = tuple(input_shape)
|
|
self._build_input_shape = input_shape
|
|
super(Sequential, self).build(input_shape)
|
|
self.built = True
|
|
|
|
def call(self, inputs, training=None, mask=None): # pylint: disable=redefined-outer-name
|
|
# If applicable, update the static input shape of the model.
|
|
if not self._has_explicit_input_shape:
|
|
if not tensor_util.is_tensor(inputs) and not isinstance(
|
|
inputs, np_arrays.ndarray):
|
|
# This is a Sequential with mutiple inputs. This is technically an
|
|
# invalid use case of Sequential, but we tolerate it for backwards
|
|
# compatibility.
|
|
self._use_legacy_deferred_behavior = True
|
|
self._build_input_shape = nest.map_structure(_get_shape_tuple, inputs)
|
|
if tf2.enabled():
|
|
logging.warning('Layers in a Sequential model should only have a '
|
|
'single input tensor, but we receive a %s input: %s'
|
|
'\nConsider rewriting this model with the Functional '
|
|
'API.' % (type(inputs), inputs))
|
|
else:
|
|
self._build_graph_network_for_inferred_shape(inputs.shape, inputs.dtype)
|
|
|
|
if self._graph_initialized:
|
|
if not self.built:
|
|
self._init_graph_network(self.inputs, self.outputs)
|
|
return super(Sequential, self).call(inputs, training=training, mask=mask)
|
|
|
|
outputs = inputs # handle the corner case where self.layers is empty
|
|
for layer in self.layers:
|
|
# During each iteration, `inputs` are the inputs to `layer`, and `outputs`
|
|
# are the outputs of `layer` applied to `inputs`. At the end of each
|
|
# iteration `inputs` is set to `outputs` to prepare for the next layer.
|
|
kwargs = {}
|
|
argspec = self._layer_call_argspecs[layer].args
|
|
if 'mask' in argspec:
|
|
kwargs['mask'] = mask
|
|
if 'training' in argspec:
|
|
kwargs['training'] = training
|
|
|
|
outputs = layer(inputs, **kwargs)
|
|
|
|
if len(nest.flatten(outputs)) != 1:
|
|
raise ValueError(SINGLE_LAYER_OUTPUT_ERROR_MSG)
|
|
# `outputs` will be the inputs to the next layer.
|
|
inputs = outputs
|
|
mask = getattr(outputs, '_keras_mask', None)
|
|
return outputs
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
shape = input_shape
|
|
for layer in self.layers:
|
|
shape = layer.compute_output_shape(shape)
|
|
return shape
|
|
|
|
def compute_mask(self, inputs, mask):
|
|
# TODO(omalleyt): b/123540974 This function is not really safe to call
|
|
# by itself because it will duplicate any updates and losses in graph
|
|
# mode by `call`ing the Layers again.
|
|
outputs = self.call(inputs, mask=mask)
|
|
return getattr(outputs, '_keras_mask', None)
|
|
|
|
def predict_proba(self, x, batch_size=32, verbose=0):
|
|
"""Generates class probability predictions for the input samples.
|
|
|
|
The input samples are processed batch by batch.
|
|
|
|
Arguments:
|
|
x: input data, as a Numpy array or list of Numpy arrays
|
|
(if the model has multiple inputs).
|
|
batch_size: integer.
|
|
verbose: verbosity mode, 0 or 1.
|
|
|
|
Returns:
|
|
A Numpy array of probability predictions.
|
|
"""
|
|
warnings.warn('`model.predict_proba()` is deprecated and '
|
|
'will be removed after 2021-01-01. '
|
|
'Please use `model.predict()` instead.')
|
|
preds = self.predict(x, batch_size, verbose)
|
|
if preds.min() < 0. or preds.max() > 1.:
|
|
logging.warning('Network returning invalid probability values. '
|
|
'The last layer might not normalize predictions '
|
|
'into probabilities '
|
|
'(like softmax or sigmoid would).')
|
|
return preds
|
|
|
|
def predict_classes(self, x, batch_size=32, verbose=0):
|
|
"""Generate class predictions for the input samples.
|
|
|
|
The input samples are processed batch by batch.
|
|
|
|
Arguments:
|
|
x: input data, as a Numpy array or list of Numpy arrays
|
|
(if the model has multiple inputs).
|
|
batch_size: integer.
|
|
verbose: verbosity mode, 0 or 1.
|
|
|
|
Returns:
|
|
A numpy array of class predictions.
|
|
"""
|
|
warnings.warn('`model.predict_classes()` is deprecated and '
|
|
'will be removed after 2021-01-01. '
|
|
'Please use instead:'
|
|
'* `np.argmax(model.predict(x), axis=-1)`, '
|
|
' if your model does multi-class classification '
|
|
' (e.g. if it uses a `softmax` last-layer activation).'
|
|
'* `(model.predict(x) > 0.5).astype("int32")`, '
|
|
' if your model does binary classification '
|
|
' (e.g. if it uses a `sigmoid` last-layer activation).')
|
|
proba = self.predict(x, batch_size=batch_size, verbose=verbose)
|
|
if proba.shape[-1] > 1:
|
|
return proba.argmax(axis=-1)
|
|
else:
|
|
return (proba > 0.5).astype('int32')
|
|
|
|
def get_config(self):
|
|
layer_configs = []
|
|
for layer in super(Sequential, self).layers:
|
|
# `super().layers` include the InputLayer if available (it is filtered out
|
|
# of `self.layers`). Note that `self._self_tracked_trackables` is managed
|
|
# by the tracking infrastructure and should not be used.
|
|
layer_configs.append(generic_utils.serialize_keras_object(layer))
|
|
config = {
|
|
'name': self.name,
|
|
'layers': copy.deepcopy(layer_configs)
|
|
}
|
|
if not self._is_graph_network and self._build_input_shape is not None:
|
|
config['build_input_shape'] = self._build_input_shape
|
|
return config
|
|
|
|
@classmethod
|
|
def from_config(cls, config, custom_objects=None):
|
|
if 'name' in config:
|
|
name = config['name']
|
|
build_input_shape = config.get('build_input_shape')
|
|
layer_configs = config['layers']
|
|
else:
|
|
name = None
|
|
build_input_shape = None
|
|
layer_configs = config
|
|
model = cls(name=name)
|
|
for layer_config in layer_configs:
|
|
layer = layer_module.deserialize(layer_config,
|
|
custom_objects=custom_objects)
|
|
model.add(layer)
|
|
if (not model.inputs and build_input_shape and
|
|
isinstance(build_input_shape, (tuple, list))):
|
|
model.build(build_input_shape)
|
|
return model
|
|
|
|
@property
|
|
def input_spec(self):
|
|
if hasattr(self, '_manual_input_spec'):
|
|
return self._manual_input_spec
|
|
if self.layers and hasattr(self.layers[0], 'input_spec'):
|
|
return self.layers[0].input_spec
|
|
return None
|
|
|
|
@input_spec.setter
|
|
def input_spec(self, value):
|
|
self._manual_input_spec = value
|
|
|
|
@property
|
|
def _trackable_saved_model_saver(self):
|
|
return model_serialization.SequentialSavedModelSaver(self)
|
|
|
|
def _is_layer_name_unique(self, layer):
|
|
for ref_layer in self.layers:
|
|
if layer.name == ref_layer.name and ref_layer is not layer:
|
|
return False
|
|
return True
|
|
|
|
def _assert_weights_created(self):
|
|
if self._graph_initialized:
|
|
return
|
|
# When the graph has not been initialized, use the Model's implementation to
|
|
# to check if the weights has been created.
|
|
super(functional.Functional, self)._assert_weights_created() # pylint: disable=bad-super-call
|
|
|
|
|
|
def _get_shape_tuple(t):
|
|
if hasattr(t, 'shape'):
|
|
shape = t.shape
|
|
if isinstance(shape, tuple):
|
|
return shape
|
|
if shape.rank is not None:
|
|
return tuple(shape.as_list())
|
|
return None
|
|
return None
|
|
|
|
|
|
def relax_input_shape(shape_1, shape_2):
|
|
if shape_1 is None or shape_2 is None:
|
|
return None
|
|
if len(shape_1) != len(shape_2):
|
|
return None
|
|
return tuple(None if d1 != d2 else d1 for d1, d2 in zip(shape_1, shape_2))
|
|
|
|
|
|
def clear_previously_created_nodes(layer, created_nodes):
|
|
"""Remove nodes from `created_nodes` from the layer's inbound_nodes."""
|
|
for node in layer._inbound_nodes:
|
|
prev_layers = node.inbound_layers
|
|
for prev_layer in nest.flatten(prev_layers):
|
|
prev_layer._outbound_nodes = [
|
|
n for n in prev_layer._outbound_nodes
|
|
if n not in created_nodes]
|
|
layer._inbound_nodes = [
|
|
n for n in layer._inbound_nodes if n not in created_nodes]
|
|
|
|
|
|
def track_nodes_created_by_last_call(layer, created_nodes):
|
|
"""Adds to `created_nodes` the nodes created by the last call to `layer`."""
|
|
if not layer._inbound_nodes:
|
|
return
|
|
created_nodes.add(layer._inbound_nodes[-1])
|
|
prev_layers = layer._inbound_nodes[-1].inbound_layers
|
|
for prev_layer in nest.flatten(prev_layers):
|
|
if prev_layer._outbound_nodes:
|
|
created_nodes.add(prev_layer._outbound_nodes[-1])
|