288 lines
11 KiB
Python
288 lines
11 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# pylint: disable=protected-access
|
|
"""Contains the InputSpec class."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from six.moves import zip # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import tensor_shape
|
|
from tensorflow.python.framework import tensor_spec
|
|
from tensorflow.python.keras import backend
|
|
from tensorflow.python.util import nest
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
@keras_export('keras.layers.InputSpec')
|
|
@tf_export(v1=['layers.InputSpec'])
|
|
class InputSpec(object):
|
|
"""Specifies the rank, dtype and shape of every input to a layer.
|
|
|
|
Layers can expose (if appropriate) an `input_spec` attribute:
|
|
an instance of `InputSpec`, or a nested structure of `InputSpec` instances
|
|
(one per input tensor). These objects enable the layer to run input
|
|
compatibility checks for input structure, input rank, input shape, and
|
|
input dtype.
|
|
|
|
A None entry in a shape is compatible with any dimension,
|
|
a None shape is compatible with any shape.
|
|
|
|
Arguments:
|
|
dtype: Expected DataType of the input.
|
|
shape: Shape tuple, expected shape of the input
|
|
(may include None for unchecked axes). Includes the batch size.
|
|
ndim: Integer, expected rank of the input.
|
|
max_ndim: Integer, maximum rank of the input.
|
|
min_ndim: Integer, minimum rank of the input.
|
|
axes: Dictionary mapping integer axes to
|
|
a specific dimension value.
|
|
allow_last_axis_squeeze: If True, then allow inputs of rank N+1 as long
|
|
as the last axis of the input is 1, as well as inputs of rank N-1
|
|
as long as the last axis of the spec is 1.
|
|
name: Expected key corresponding to this input when passing data as
|
|
a dictionary.
|
|
|
|
Example:
|
|
|
|
```python
|
|
class MyLayer(Layer):
|
|
def __init__(self):
|
|
super(MyLayer, self).__init__()
|
|
# The layer will accept inputs with shape (?, 28, 28) & (?, 28, 28, 1)
|
|
# and raise an appropriate error message otherwise.
|
|
self.input_spec = InputSpec(
|
|
shape=(None, 28, 28, 1),
|
|
allow_last_axis_squeeze=True)
|
|
```
|
|
"""
|
|
|
|
def __init__(self,
|
|
dtype=None,
|
|
shape=None,
|
|
ndim=None,
|
|
max_ndim=None,
|
|
min_ndim=None,
|
|
axes=None,
|
|
allow_last_axis_squeeze=False,
|
|
name=None):
|
|
self.dtype = dtypes.as_dtype(dtype).name if dtype is not None else None
|
|
shape = tensor_shape.TensorShape(shape)
|
|
if shape.rank is None:
|
|
shape = None
|
|
else:
|
|
shape = tuple(shape.as_list())
|
|
if shape is not None:
|
|
self.ndim = len(shape)
|
|
self.shape = shape
|
|
else:
|
|
self.ndim = ndim
|
|
self.shape = None
|
|
self.max_ndim = max_ndim
|
|
self.min_ndim = min_ndim
|
|
self.name = name
|
|
self.allow_last_axis_squeeze = allow_last_axis_squeeze
|
|
try:
|
|
axes = axes or {}
|
|
self.axes = {int(k): axes[k] for k in axes}
|
|
except (ValueError, TypeError):
|
|
raise TypeError('The keys in axes must be integers.')
|
|
|
|
if self.axes and (self.ndim is not None or self.max_ndim is not None):
|
|
max_dim = (self.ndim if self.ndim else self.max_ndim) - 1
|
|
max_axis = max(self.axes)
|
|
if max_axis > max_dim:
|
|
raise ValueError('Axis {} is greater than the maximum allowed value: {}'
|
|
.format(max_axis, max_dim))
|
|
|
|
def __repr__(self):
|
|
spec = [('dtype=' + str(self.dtype)) if self.dtype else '',
|
|
('shape=' + str(self.shape)) if self.shape else '',
|
|
('ndim=' + str(self.ndim)) if self.ndim else '',
|
|
('max_ndim=' + str(self.max_ndim)) if self.max_ndim else '',
|
|
('min_ndim=' + str(self.min_ndim)) if self.min_ndim else '',
|
|
('axes=' + str(self.axes)) if self.axes else '']
|
|
return 'InputSpec(%s)' % ', '.join(x for x in spec if x)
|
|
|
|
def get_config(self):
|
|
return {
|
|
'dtype': self.dtype,
|
|
'shape': self.shape,
|
|
'ndim': self.ndim,
|
|
'max_ndim': self.max_ndim,
|
|
'min_ndim': self.min_ndim,
|
|
'axes': self.axes}
|
|
|
|
@classmethod
|
|
def from_config(cls, config):
|
|
return cls(**config)
|
|
|
|
|
|
def to_tensor_shape(spec):
|
|
"""Returns a tf.TensorShape object that matches the shape specifications.
|
|
|
|
If the InputSpec's shape or ndim is defined, this method will return a fully
|
|
or partially-known shape. Otherwise, the returned TensorShape is None.
|
|
|
|
Args:
|
|
spec: an InputSpec object.
|
|
|
|
Returns:
|
|
a tf.TensorShape object
|
|
"""
|
|
if spec.ndim is None and spec.shape is None:
|
|
return tensor_shape.TensorShape(None)
|
|
elif spec.shape is not None:
|
|
return tensor_shape.TensorShape(spec.shape)
|
|
else:
|
|
shape = [None] * spec.ndim
|
|
for a in spec.axes:
|
|
shape[a] = spec.axes[a] # Assume that axes is defined
|
|
return tensor_shape.TensorShape(shape)
|
|
|
|
|
|
def assert_input_compatibility(input_spec, inputs, layer_name):
|
|
"""Checks compatibility between the layer and provided inputs.
|
|
|
|
This checks that the tensor(s) `inputs` verify the input assumptions
|
|
of a layer (if any). If not, a clear and actional exception gets raised.
|
|
|
|
Arguments:
|
|
input_spec: An InputSpec instance, list of InputSpec instances, a nested
|
|
structure of InputSpec instances, or None.
|
|
inputs: Input tensor, list of input tensors, or a nested structure of
|
|
input tensors.
|
|
layer_name: String, name of the layer (for error message formatting).
|
|
|
|
Raises:
|
|
ValueError: in case of mismatch between
|
|
the provided inputs and the expectations of the layer.
|
|
"""
|
|
if not input_spec:
|
|
return
|
|
|
|
input_spec = nest.flatten(input_spec)
|
|
if isinstance(inputs, dict):
|
|
# Flatten `inputs` by reference order if input spec names are provided
|
|
names = [spec.name for spec in input_spec]
|
|
if all(names):
|
|
list_inputs = []
|
|
for name in names:
|
|
if name not in inputs:
|
|
raise ValueError('Missing data for input "%s". '
|
|
'You passed a data dictionary with keys %s. '
|
|
'Expected the following keys: %s' %
|
|
(name, list(inputs.keys()), names))
|
|
list_inputs.append(inputs[name])
|
|
inputs = list_inputs
|
|
|
|
inputs = nest.flatten(inputs)
|
|
for x in inputs:
|
|
# Having a shape/dtype is the only commonality of the various tensor-like
|
|
# objects that may be passed. The most common kind of invalid type we are
|
|
# guarding for is a Layer instance (Functional API), which does not
|
|
# have a `shape` attribute.
|
|
if not hasattr(x, 'shape'):
|
|
raise TypeError('Inputs to a layer should be tensors. Got: %s' % (x,))
|
|
|
|
if len(inputs) != len(input_spec):
|
|
raise ValueError('Layer ' + layer_name + ' expects ' +
|
|
str(len(input_spec)) + ' input(s), '
|
|
'but it received ' + str(len(inputs)) +
|
|
' input tensors. Inputs received: ' + str(inputs))
|
|
for input_index, (x, spec) in enumerate(zip(inputs, input_spec)):
|
|
if spec is None:
|
|
continue
|
|
|
|
shape = tensor_shape.TensorShape(x.shape)
|
|
if shape.rank is None:
|
|
return
|
|
# Check ndim.
|
|
if spec.ndim is not None and not spec.allow_last_axis_squeeze:
|
|
ndim = shape.rank
|
|
if ndim != spec.ndim:
|
|
raise ValueError('Input ' + str(input_index) + ' of layer ' +
|
|
layer_name + ' is incompatible with the layer: '
|
|
'expected ndim=' + str(spec.ndim) + ', found ndim=' +
|
|
str(ndim) + '. Full shape received: ' +
|
|
str(tuple(shape)))
|
|
if spec.max_ndim is not None:
|
|
ndim = x.shape.rank
|
|
if ndim is not None and ndim > spec.max_ndim:
|
|
raise ValueError('Input ' + str(input_index) + ' of layer ' +
|
|
layer_name + ' is incompatible with the layer: '
|
|
'expected max_ndim=' + str(spec.max_ndim) +
|
|
', found ndim=' + str(ndim))
|
|
if spec.min_ndim is not None:
|
|
ndim = x.shape.rank
|
|
if ndim is not None and ndim < spec.min_ndim:
|
|
raise ValueError('Input ' + str(input_index) + ' of layer ' +
|
|
layer_name + ' is incompatible with the layer: '
|
|
': expected min_ndim=' + str(spec.min_ndim) +
|
|
', found ndim=' + str(ndim) +
|
|
'. Full shape received: ' +
|
|
str(tuple(shape)))
|
|
# Check dtype.
|
|
if spec.dtype is not None:
|
|
if x.dtype.name != spec.dtype:
|
|
raise ValueError('Input ' + str(input_index) + ' of layer ' +
|
|
layer_name + ' is incompatible with the layer: '
|
|
'expected dtype=' + str(spec.dtype) +
|
|
', found dtype=' + str(x.dtype))
|
|
|
|
# Check specific shape axes.
|
|
shape_as_list = shape.as_list()
|
|
if spec.axes:
|
|
for axis, value in spec.axes.items():
|
|
if hasattr(value, 'value'):
|
|
value = value.value
|
|
if value is not None and shape_as_list[int(axis)] not in {value, None}:
|
|
raise ValueError(
|
|
'Input ' + str(input_index) + ' of layer ' + layer_name + ' is'
|
|
' incompatible with the layer: expected axis ' + str(axis) +
|
|
' of input shape to have value ' + str(value) +
|
|
' but received input with shape ' + display_shape(x.shape))
|
|
# Check shape.
|
|
if spec.shape is not None and shape.rank is not None:
|
|
spec_shape = spec.shape
|
|
if spec.allow_last_axis_squeeze:
|
|
if shape_as_list and shape_as_list[-1] == 1:
|
|
shape_as_list = shape_as_list[:-1]
|
|
if spec_shape and spec_shape[-1] == 1:
|
|
spec_shape = spec_shape[:-1]
|
|
for spec_dim, dim in zip(spec_shape, shape_as_list):
|
|
if spec_dim is not None and dim is not None:
|
|
if spec_dim != dim:
|
|
raise ValueError('Input ' + str(input_index) +
|
|
' is incompatible with layer ' + layer_name +
|
|
': expected shape=' + str(spec.shape) +
|
|
', found shape=' + display_shape(x.shape))
|
|
|
|
|
|
def display_shape(shape):
|
|
return str(tuple(shape.as_list()))
|
|
|
|
|
|
def to_tensor_spec(input_spec, default_dtype=None):
|
|
"""Converts a Keras InputSpec object to a TensorSpec."""
|
|
default_dtype = default_dtype or backend.floatx()
|
|
if isinstance(input_spec, InputSpec):
|
|
dtype = input_spec.dtype or default_dtype
|
|
return tensor_spec.TensorSpec(to_tensor_shape(input_spec), dtype)
|
|
return tensor_spec.TensorSpec(None, default_dtype)
|