STT-tensorflow/tensorflow/python/keras/engine/control_flow_test.py

139 lines
4.6 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for dynamic control flow behavior with Keras."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import def_function
from tensorflow.python.framework import dtypes
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import base_layer
from tensorflow.python.keras.optimizer_v2 import rmsprop
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.platform import test
class ControlFlowLayer1(base_layer.Layer):
"""Layer with an `if` condition in call."""
def call(self, inputs):
if math_ops.reduce_sum(inputs) > 0:
return math_ops.sqrt(inputs)
else:
return math_ops.square(inputs)
class ControlFlowLayer2(base_layer.Layer):
"""Layer with a `for` loop in call."""
def call(self, inputs):
samples = tensor_array_ops.TensorArray(
dtype=dtypes.float32, size=array_ops.shape(inputs)[0])
i = 0
for sample in inputs:
samples = samples.write(i, math_ops.square(sample))
i += 1
return samples.stack()
class NestedControlFlowLayer(base_layer.Layer):
"""Layer nested with a control flow layer."""
def __init__(self, **kwargs):
super(NestedControlFlowLayer, self).__init__(**kwargs)
self.layer = ControlFlowLayer1()
def call(self, inputs):
return self.layer(inputs)
class ControlFlowModel(keras.Model):
"""Model with an `if` condition in call."""
def call(self, inputs):
if math_ops.reduce_sum(inputs) > 0:
return math_ops.sqrt(inputs)
else:
return math_ops.square(inputs)
class NestedControlFlowModel(keras.Model):
"""Model with an `if` condition in call using a control flow layer."""
def __init__(self, **kwargs):
super(NestedControlFlowModel, self).__init__(**kwargs)
self.layer = NestedControlFlowLayer()
def call(self, inputs):
inputs = self.layer(inputs)
if math_ops.reduce_sum(inputs) > 0:
return math_ops.sqrt(inputs)
else:
return math_ops.square(inputs)
class FunctionControlFlowModel(keras.Model):
"""Model with control flow where `call` is wrapped in function already."""
@def_function.function
def call(self, inputs):
if math_ops.reduce_sum(inputs) > 0:
return math_ops.sqrt(inputs)
else:
return math_ops.square(inputs)
@keras_parameterized.run_all_keras_modes
class AutographWrapperTest(keras_parameterized.TestCase):
@keras_parameterized.run_with_all_model_types
@parameterized.named_parameters(('with_if', ControlFlowLayer1),
('with_for', ControlFlowLayer2),
('nested', NestedControlFlowLayer))
def test_control_flow_layer(self, layer_class):
model = testing_utils.get_model_from_layers([layer_class()],
input_shape=(3,))
model.compile(rmsprop.RMSprop(0.001), loss='mse')
model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3)))
@parameterized.named_parameters(
('with_if', ControlFlowModel), ('nested', NestedControlFlowModel),
('wrapped_in_function', FunctionControlFlowModel))
def test_control_flow_model(self, model_class):
model = model_class()
model.compile(rmsprop.RMSprop(0.001), loss='mse')
model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3)))
def test_control_flow_in_deferred_sequential_model(self):
model = keras.Sequential(
[ControlFlowLayer1(),
keras.layers.Dense(3),
ControlFlowLayer2()])
model.compile(rmsprop.RMSprop(0.001), loss='mse')
model.train_on_batch(np.random.random((2, 3)), np.random.random((2, 3)))
if __name__ == '__main__':
test.main()