TF distribute shouldn't rely on any keras code. PiperOrigin-RevId: 340483958 Change-Id: I4c3774dce1e914dc1f257d13117420a3fb9b3406
112 lines
4.0 KiB
Python
112 lines
4.0 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for ShardedVariable."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.compat import v2_compat
|
|
from tensorflow.python.distribute import sharded_variable
|
|
from tensorflow.python.keras.engine import base_layer
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables as variables_lib
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class ShardedVariableTest(test.TestCase):
|
|
|
|
def test_keras_layer_setattr(self):
|
|
|
|
class Layer(base_layer.Layer):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
variables1 = [
|
|
variables_lib.Variable([0]),
|
|
variables_lib.Variable([1]),
|
|
]
|
|
variables2 = [
|
|
variables_lib.Variable([2], trainable=False),
|
|
variables_lib.Variable([3], trainable=False),
|
|
]
|
|
self.w = sharded_variable.ShardedVariable(variables1)
|
|
self.b = sharded_variable.ShardedVariable(variables2)
|
|
|
|
layer = Layer()
|
|
|
|
self.assertLen(layer.trainable_weights, 2)
|
|
self.assertEqual(layer.trainable_weights[0], [0])
|
|
self.assertEqual(layer.trainable_weights[1], [1])
|
|
self.assertLen(layer.non_trainable_weights, 2)
|
|
self.assertEqual(layer.non_trainable_weights[0], [2])
|
|
self.assertEqual(layer.non_trainable_weights[1], [3])
|
|
self.assertAllEqual(layer.weights,
|
|
layer.trainable_weights + layer.non_trainable_weights)
|
|
self.assertAllEqual(layer.trainable_weights, layer.trainable_variables)
|
|
self.assertAllEqual(layer.weights, layer.variables)
|
|
|
|
checkpoint_deps = set(dep.ref for dep in layer._checkpoint_dependencies)
|
|
self.assertEqual(checkpoint_deps, set([layer.w, layer.b]))
|
|
|
|
def test_keras_layer_add_weight(self):
|
|
|
|
class Layer(base_layer.Layer):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.w = self.add_weight(
|
|
shape=(2,), initializer=lambda shape, dtype: [0, 1], trainable=True)
|
|
self.b = self.add_weight(
|
|
shape=(2,),
|
|
initializer=lambda shape, dtype: [2, 3],
|
|
trainable=False)
|
|
|
|
def sharded_variable_creator(next_creator, **kwargs):
|
|
v1_value = kwargs['initial_value']()[0:1]
|
|
v2_value = kwargs['initial_value']()[1:]
|
|
|
|
kwargs['initial_value'] = v1_value
|
|
kwargs['shape'] = (1,)
|
|
v1 = next_creator(**kwargs)
|
|
|
|
kwargs['initial_value'] = v2_value
|
|
kwargs['shape'] = (1,)
|
|
v2 = next_creator(**kwargs)
|
|
|
|
return sharded_variable.ShardedVariable([v1, v2])
|
|
|
|
with variable_scope.variable_creator_scope(sharded_variable_creator):
|
|
layer = Layer()
|
|
|
|
self.assertLen(layer.trainable_weights, 2)
|
|
self.assertEqual(layer.trainable_weights[0], [0])
|
|
self.assertEqual(layer.trainable_weights[1], [1])
|
|
self.assertLen(layer.non_trainable_weights, 2)
|
|
self.assertEqual(layer.non_trainable_weights[0], [2])
|
|
self.assertEqual(layer.non_trainable_weights[1], [3])
|
|
self.assertAllEqual(layer.weights,
|
|
layer.trainable_weights + layer.non_trainable_weights)
|
|
self.assertAllEqual(layer.trainable_weights, layer.trainable_variables)
|
|
self.assertAllEqual(layer.weights, layer.variables)
|
|
|
|
checkpoint_deps = set(dep.ref for dep in layer._checkpoint_dependencies)
|
|
self.assertEqual(checkpoint_deps, set([layer.w, layer.b]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
v2_compat.enable_v2_behavior()
|
|
test.main()
|