STT-tensorflow/tensorflow/python/keras/distribute/optimizer_combinations.py
Scott Zhu 9645e47535 Update DS tests in keras to use public TF combination symbols.
PiperOrigin-RevId: 330850095
Change-Id: I93f45c0f9c35a6c7257e182e9126d96f3a02e2c7
2020-09-09 19:53:43 -07:00

111 lines
5.0 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Strategy and optimizer combinations for combinations.combine()."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.distribute import strategy_combinations as strategy_combinations_base
from tensorflow.python.framework import test_combinations as combinations
from tensorflow.python.keras.optimizer_v2 import adadelta as adadelta_keras_v2
from tensorflow.python.keras.optimizer_v2 import adagrad as adagrad_keras_v2
from tensorflow.python.keras.optimizer_v2 import adam as adam_keras_v2
from tensorflow.python.keras.optimizer_v2 import adamax as adamax_keras_v2
from tensorflow.python.keras.optimizer_v2 import ftrl as ftrl_keras_v2
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_keras_v2
from tensorflow.python.keras.optimizer_v2 import nadam as nadam_keras_v2
from tensorflow.python.keras.optimizer_v2 import rmsprop as rmsprop_keras_v2
from tensorflow.python.training import adagrad
from tensorflow.python.training import adam
from tensorflow.python.training import ftrl
from tensorflow.python.training import gradient_descent
from tensorflow.python.training import rmsprop
gradient_descent_optimizer_v1_fn = combinations.NamedObject(
"GradientDescentV1",
lambda: gradient_descent.GradientDescentOptimizer(0.001))
adagrad_optimizer_v1_fn = combinations.NamedObject(
"AdagradV1", lambda: adagrad.AdagradOptimizer(0.001))
adam_optimizer_v1_fn = combinations.NamedObject(
"AdamV1", lambda: adam.AdamOptimizer(0.001, epsilon=1))
ftrl_optimizer_v1_fn = combinations.NamedObject(
"FtrlV1", lambda: ftrl.FtrlOptimizer(0.001))
rmsprop_optimizer_v1_fn = combinations.NamedObject(
"RmsPropV1", lambda: rmsprop.RMSPropOptimizer(0.001))
# TODO(shiningsun): consider adding the other v1 optimizers
optimizers_v1 = [
gradient_descent_optimizer_v1_fn, adagrad_optimizer_v1_fn,
ftrl_optimizer_v1_fn, rmsprop_optimizer_v1_fn
]
adadelta_optimizer_keras_v2_fn = combinations.NamedObject(
"AdadeltaKerasV2", lambda: adadelta_keras_v2.Adadelta(0.001))
adagrad_optimizer_keras_v2_fn = combinations.NamedObject(
"AdagradKerasV2", lambda: adagrad_keras_v2.Adagrad(0.001))
adam_optimizer_keras_v2_fn = combinations.NamedObject(
"AdamKerasV2", lambda: adam_keras_v2.Adam(0.001, epsilon=1.0))
adamax_optimizer_keras_v2_fn = combinations.NamedObject(
"AdamaxKerasV2", lambda: adamax_keras_v2.Adamax(0.001, epsilon=1.0))
nadam_optimizer_keras_v2_fn = combinations.NamedObject(
"NadamKerasV2", lambda: nadam_keras_v2.Nadam(0.001, epsilon=1.0))
ftrl_optimizer_keras_v2_fn = combinations.NamedObject(
"FtrlKerasV2", lambda: ftrl_keras_v2.Ftrl(0.001))
gradient_descent_optimizer_keras_v2_fn = combinations.NamedObject(
"GradientDescentKerasV2", lambda: gradient_descent_keras_v2.SGD(0.001))
rmsprop_optimizer_keras_v2_fn = combinations.NamedObject(
"RmsPropKerasV2", lambda: rmsprop_keras_v2.RMSprop(0.001))
# TODO(shiningsun): consider adding the other v2 optimizers
optimizers_v2 = [
gradient_descent_optimizer_keras_v2_fn, adagrad_optimizer_keras_v2_fn
]
optimizers_v1_and_v2 = optimizers_v1 + optimizers_v2
def distributions_and_v1_optimizers():
"""A common set of combination with DistributionStrategies and Optimizers."""
return combinations.combine(
distribution=[
strategy_combinations_base.one_device_strategy,
strategy_combinations_base.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations_base.mirrored_strategy_with_two_gpus,
],
optimizer_fn=optimizers_v1)
def distributions_and_v2_optimizers():
"""A common set of combination with DistributionStrategies and Optimizers."""
return combinations.combine(
distribution=[
strategy_combinations_base.one_device_strategy,
strategy_combinations_base.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations_base.mirrored_strategy_with_two_gpus,
],
optimizer_fn=optimizers_v2)
def distributions_and_v1_and_v2_optimizers():
"""A common set of combination with DistributionStrategies and Optimizers."""
return combinations.combine(
distribution=[
strategy_combinations_base.one_device_strategy,
strategy_combinations_base.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations_base.mirrored_strategy_with_two_gpus,
],
optimizer_fn=optimizers_v1_and_v2)