STT-tensorflow/tensorflow/python/keras/distribute/keras_metrics_test.py
Scott Zhu e4ec26f50c Update keras/distribute test wrt to tpu_strategy_one_step{_one_core}
The step argument has been removed in TF2.

PiperOrigin-RevId: 332477799
Change-Id: Ifcfa8bba7228baad73ba3993a9024031bee70fe0
2020-09-18 10:35:43 -07:00

131 lines
5.0 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations as ds_combinations
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_combinations as combinations
from tensorflow.python.keras import metrics
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
def _labeled_dataset_fn():
# First four batches of x: labels, predictions -> (labels == predictions)
# 0: 0, 0 -> True; 1: 1, 1 -> True; 2: 2, 2 -> True; 3: 3, 0 -> False
# 4: 4, 1 -> False; 5: 0, 2 -> False; 6: 1, 0 -> False; 7: 2, 1 -> False
# 8: 3, 2 -> False; 9: 4, 0 -> False; 10: 0, 1 -> False; 11: 1, 2 -> False
# 12: 2, 0 -> False; 13: 3, 1 -> False; 14: 4, 2 -> False; 15: 0, 0 -> True
return dataset_ops.Dataset.range(1000).map(
lambda x: {"labels": x % 5, "predictions": x % 3}).batch(
4, drop_remainder=True)
def _boolean_dataset_fn():
# First four batches of labels, predictions: {TP, FP, TN, FN}
# with a threshold of 0.5:
# T, T -> TP; F, T -> FP; T, F -> FN
# F, F -> TN; T, T -> TP; F, T -> FP
# T, F -> FN; F, F -> TN; T, T -> TP
# F, T -> FP; T, F -> FN; F, F -> TN
return dataset_ops.Dataset.from_tensor_slices({
"labels": [True, False, True, False],
"predictions": [True, True, False, False]}).repeat().batch(
3, drop_remainder=True)
def _threshold_dataset_fn():
# First four batches of labels, predictions: {TP, FP, TN, FN}
# with a threshold of 0.5:
# True, 1.0 -> TP; False, .75 -> FP; True, .25 -> FN
# False, 0.0 -> TN; True, 1.0 -> TP; False, .75 -> FP
# True, .25 -> FN; False, 0.0 -> TN; True, 1.0 -> TP
# False, .75 -> FP; True, .25 -> FN; False, 0.0 -> TN
return dataset_ops.Dataset.from_tensor_slices({
"labels": [True, False, True, False],
"predictions": [1.0, 0.75, 0.25, 0.]}).repeat().batch(
3, drop_remainder=True)
def _regression_dataset_fn():
return dataset_ops.Dataset.from_tensor_slices({
"labels": [1., .5, 1., 0.],
"predictions": [1., .75, .25, 0.]}).repeat()
def all_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.one_device_strategy,
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus,
],
mode=["graph"])
def tpu_combinations():
return combinations.combine(
distribution=[strategy_combinations.tpu_strategy,],
mode=["graph"])
class KerasMetricsTest(test.TestCase, parameterized.TestCase):
def _test_metric(self, distribution, dataset_fn, metric_init_fn, expected_fn):
with ops.Graph().as_default(), distribution.scope():
metric = metric_init_fn()
iterator = distribution.make_input_fn_iterator(lambda _: dataset_fn())
updates = distribution.experimental_local_results(
distribution.run(metric, args=(iterator.get_next(),)))
batches_per_update = distribution.num_replicas_in_sync
self.evaluate(iterator.initializer)
self.evaluate([v.initializer for v in metric.variables])
batches_consumed = 0
for i in range(4):
batches_consumed += batches_per_update
self.evaluate(updates)
self.assertAllClose(expected_fn(batches_consumed),
self.evaluate(metric.result()),
0.001,
msg="After update #" + str(i+1))
if batches_consumed >= 4: # Consume 4 input batches in total.
break
@ds_combinations.generate(all_combinations() + tpu_combinations())
def testMean(self, distribution):
def _dataset_fn():
return dataset_ops.Dataset.range(1000).map(math_ops.to_float).batch(
4, drop_remainder=True)
def _expected_fn(num_batches):
# Mean(0..3) = 1.5, Mean(0..7) = 3.5, Mean(0..11) = 5.5, etc.
return num_batches * 2 - 0.5
self._test_metric(distribution, _dataset_fn, metrics.Mean, _expected_fn)
if __name__ == "__main__":
test.main()