333 lines
13 KiB
Python
333 lines
13 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# pylint: disable=invalid-name
|
|
"""Xception V1 model for Keras.
|
|
|
|
On ImageNet, this model gets to a top-1 validation accuracy of 0.790
|
|
and a top-5 validation accuracy of 0.945.
|
|
|
|
Reference:
|
|
- [Xception: Deep Learning with Depthwise Separable Convolutions](
|
|
https://arxiv.org/abs/1610.02357) (CVPR 2017)
|
|
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.keras import backend
|
|
from tensorflow.python.keras.applications import imagenet_utils
|
|
from tensorflow.python.keras.engine import training
|
|
from tensorflow.python.keras.layers import VersionAwareLayers
|
|
from tensorflow.python.keras.utils import data_utils
|
|
from tensorflow.python.keras.utils import layer_utils
|
|
from tensorflow.python.lib.io import file_io
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
TF_WEIGHTS_PATH = (
|
|
'https://storage.googleapis.com/tensorflow/keras-applications/'
|
|
'xception/xception_weights_tf_dim_ordering_tf_kernels.h5')
|
|
TF_WEIGHTS_PATH_NO_TOP = (
|
|
'https://storage.googleapis.com/tensorflow/keras-applications/'
|
|
'xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5')
|
|
|
|
layers = VersionAwareLayers()
|
|
|
|
|
|
@keras_export('keras.applications.xception.Xception',
|
|
'keras.applications.Xception')
|
|
def Xception(
|
|
include_top=True,
|
|
weights='imagenet',
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation='softmax'):
|
|
"""Instantiates the Xception architecture.
|
|
|
|
Reference:
|
|
- [Xception: Deep Learning with Depthwise Separable Convolutions](
|
|
https://arxiv.org/abs/1610.02357) (CVPR 2017)
|
|
|
|
Optionally loads weights pre-trained on ImageNet.
|
|
Note that the data format convention used by the model is
|
|
the one specified in your Keras config at `~/.keras/keras.json`.
|
|
Note that the default input image size for this model is 299x299.
|
|
|
|
Note: each Keras Application expects a specific kind of input preprocessing.
|
|
For Xception, call `tf.keras.applications.xception.preprocess_input` on your
|
|
inputs before passing them to the model.
|
|
|
|
Arguments:
|
|
include_top: whether to include the fully-connected
|
|
layer at the top of the network.
|
|
weights: one of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded.
|
|
input_tensor: optional Keras tensor
|
|
(i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: optional shape tuple, only to be specified
|
|
if `include_top` is False (otherwise the input shape
|
|
has to be `(299, 299, 3)`.
|
|
It should have exactly 3 inputs channels,
|
|
and width and height should be no smaller than 71.
|
|
E.g. `(150, 150, 3)` would be one valid value.
|
|
pooling: Optional pooling mode for feature extraction
|
|
when `include_top` is `False`.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional block.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional block, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True,
|
|
and if no `weights` argument is specified.
|
|
classifier_activation: A `str` or callable. The activation function to use
|
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
|
`classifier_activation=None` to return the logits of the "top" layer.
|
|
|
|
Returns:
|
|
A `keras.Model` instance.
|
|
|
|
Raises:
|
|
ValueError: in case of invalid argument for `weights`,
|
|
or invalid input shape.
|
|
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
|
using a pretrained top layer.
|
|
"""
|
|
if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)):
|
|
raise ValueError('The `weights` argument should be either '
|
|
'`None` (random initialization), `imagenet` '
|
|
'(pre-training on ImageNet), '
|
|
'or the path to the weights file to be loaded.')
|
|
|
|
if weights == 'imagenet' and include_top and classes != 1000:
|
|
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
|
|
' as true, `classes` should be 1000')
|
|
|
|
# Determine proper input shape
|
|
input_shape = imagenet_utils.obtain_input_shape(
|
|
input_shape,
|
|
default_size=299,
|
|
min_size=71,
|
|
data_format=backend.image_data_format(),
|
|
require_flatten=include_top,
|
|
weights=weights)
|
|
|
|
if input_tensor is None:
|
|
img_input = layers.Input(shape=input_shape)
|
|
else:
|
|
if not backend.is_keras_tensor(input_tensor):
|
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
|
else:
|
|
img_input = input_tensor
|
|
|
|
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
|
|
|
|
x = layers.Conv2D(
|
|
32, (3, 3),
|
|
strides=(2, 2),
|
|
use_bias=False,
|
|
name='block1_conv1')(img_input)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x)
|
|
x = layers.Activation('relu', name='block1_conv1_act')(x)
|
|
x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x)
|
|
x = layers.Activation('relu', name='block1_conv2_act')(x)
|
|
|
|
residual = layers.Conv2D(
|
|
128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.SeparableConv2D(
|
|
128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv1_bn')(x)
|
|
x = layers.Activation('relu', name='block2_sepconv2_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block2_sepconv2_bn')(x)
|
|
|
|
x = layers.MaxPooling2D((3, 3),
|
|
strides=(2, 2),
|
|
padding='same',
|
|
name='block2_pool')(x)
|
|
x = layers.add([x, residual])
|
|
|
|
residual = layers.Conv2D(
|
|
256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.Activation('relu', name='block3_sepconv1_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv1_bn')(x)
|
|
x = layers.Activation('relu', name='block3_sepconv2_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block3_sepconv2_bn')(x)
|
|
|
|
x = layers.MaxPooling2D((3, 3),
|
|
strides=(2, 2),
|
|
padding='same',
|
|
name='block3_pool')(x)
|
|
x = layers.add([x, residual])
|
|
|
|
residual = layers.Conv2D(
|
|
728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.Activation('relu', name='block4_sepconv1_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv1_bn')(x)
|
|
x = layers.Activation('relu', name='block4_sepconv2_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name='block4_sepconv2_bn')(x)
|
|
|
|
x = layers.MaxPooling2D((3, 3),
|
|
strides=(2, 2),
|
|
padding='same',
|
|
name='block4_pool')(x)
|
|
x = layers.add([x, residual])
|
|
|
|
for i in range(8):
|
|
residual = x
|
|
prefix = 'block' + str(i + 5)
|
|
|
|
x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3),
|
|
padding='same',
|
|
use_bias=False,
|
|
name=prefix + '_sepconv1')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name=prefix + '_sepconv1_bn')(x)
|
|
x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3),
|
|
padding='same',
|
|
use_bias=False,
|
|
name=prefix + '_sepconv2')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name=prefix + '_sepconv2_bn')(x)
|
|
x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3),
|
|
padding='same',
|
|
use_bias=False,
|
|
name=prefix + '_sepconv3')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name=prefix + '_sepconv3_bn')(x)
|
|
|
|
x = layers.add([x, residual])
|
|
|
|
residual = layers.Conv2D(
|
|
1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.Activation('relu', name='block13_sepconv1_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name='block13_sepconv1_bn')(x)
|
|
x = layers.Activation('relu', name='block13_sepconv2_act')(x)
|
|
x = layers.SeparableConv2D(
|
|
1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name='block13_sepconv2_bn')(x)
|
|
|
|
x = layers.MaxPooling2D((3, 3),
|
|
strides=(2, 2),
|
|
padding='same',
|
|
name='block13_pool')(x)
|
|
x = layers.add([x, residual])
|
|
|
|
x = layers.SeparableConv2D(
|
|
1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name='block14_sepconv1_bn')(x)
|
|
x = layers.Activation('relu', name='block14_sepconv1_act')(x)
|
|
|
|
x = layers.SeparableConv2D(
|
|
2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name='block14_sepconv2_bn')(x)
|
|
x = layers.Activation('relu', name='block14_sepconv2_act')(x)
|
|
|
|
if include_top:
|
|
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
|
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
|
x = layers.Dense(classes, activation=classifier_activation,
|
|
name='predictions')(x)
|
|
else:
|
|
if pooling == 'avg':
|
|
x = layers.GlobalAveragePooling2D()(x)
|
|
elif pooling == 'max':
|
|
x = layers.GlobalMaxPooling2D()(x)
|
|
|
|
# Ensure that the model takes into account
|
|
# any potential predecessors of `input_tensor`.
|
|
if input_tensor is not None:
|
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
|
else:
|
|
inputs = img_input
|
|
# Create model.
|
|
model = training.Model(inputs, x, name='xception')
|
|
|
|
# Load weights.
|
|
if weights == 'imagenet':
|
|
if include_top:
|
|
weights_path = data_utils.get_file(
|
|
'xception_weights_tf_dim_ordering_tf_kernels.h5',
|
|
TF_WEIGHTS_PATH,
|
|
cache_subdir='models',
|
|
file_hash='0a58e3b7378bc2990ea3b43d5981f1f6')
|
|
else:
|
|
weights_path = data_utils.get_file(
|
|
'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
|
TF_WEIGHTS_PATH_NO_TOP,
|
|
cache_subdir='models',
|
|
file_hash='b0042744bf5b25fce3cb969f33bebb97')
|
|
model.load_weights(weights_path)
|
|
elif weights is not None:
|
|
model.load_weights(weights)
|
|
|
|
return model
|
|
|
|
|
|
@keras_export('keras.applications.xception.preprocess_input')
|
|
def preprocess_input(x, data_format=None):
|
|
return imagenet_utils.preprocess_input(x, data_format=data_format, mode='tf')
|
|
|
|
|
|
@keras_export('keras.applications.xception.decode_predictions')
|
|
def decode_predictions(preds, top=5):
|
|
return imagenet_utils.decode_predictions(preds, top=top)
|
|
|
|
|
|
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
|
mode='',
|
|
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
|
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|