433 lines
15 KiB
Python
433 lines
15 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Utilities for ImageNet data preprocessing & prediction decoding."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import json
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.keras import activations
|
|
from tensorflow.python.keras import backend
|
|
from tensorflow.python.keras.utils import data_utils
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
CLASS_INDEX = None
|
|
CLASS_INDEX_PATH = ('https://storage.googleapis.com/download.tensorflow.org/'
|
|
'data/imagenet_class_index.json')
|
|
|
|
|
|
PREPROCESS_INPUT_DOC = """
|
|
Preprocesses a tensor or Numpy array encoding a batch of images.
|
|
|
|
Usage example with `applications.MobileNet`:
|
|
|
|
```python
|
|
i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)
|
|
x = tf.cast(i, tf.float32)
|
|
x = tf.keras.applications.mobilenet.preprocess_input(x)
|
|
core = tf.keras.applications.MobileNet()
|
|
x = core(x)
|
|
model = tf.keras.Model(inputs=[i], outputs=[x])
|
|
|
|
image = tf.image.decode_png(tf.io.read_file('file.png'))
|
|
result = model(image)
|
|
```
|
|
|
|
Arguments:
|
|
x: A floating point `numpy.array` or a `tf.Tensor`, 3D or 4D with 3 color
|
|
channels, with values in the range [0, 255].
|
|
The preprocessed data are written over the input data
|
|
if the data types are compatible. To avoid this
|
|
behaviour, `numpy.copy(x)` can be used.
|
|
data_format: Optional data format of the image tensor/array. Defaults to
|
|
None, in which case the global setting
|
|
`tf.keras.backend.image_data_format()` is used (unless you changed it,
|
|
it defaults to "channels_last").{mode}
|
|
|
|
Returns:
|
|
Preprocessed `numpy.array` or a `tf.Tensor` with type `float32`.
|
|
{ret}
|
|
|
|
Raises:
|
|
{error}
|
|
"""
|
|
|
|
PREPROCESS_INPUT_MODE_DOC = """
|
|
mode: One of "caffe", "tf" or "torch". Defaults to "caffe".
|
|
- caffe: will convert the images from RGB to BGR,
|
|
then will zero-center each color channel with
|
|
respect to the ImageNet dataset,
|
|
without scaling.
|
|
- tf: will scale pixels between -1 and 1,
|
|
sample-wise.
|
|
- torch: will scale pixels between 0 and 1 and then
|
|
will normalize each channel with respect to the
|
|
ImageNet dataset.
|
|
"""
|
|
|
|
PREPROCESS_INPUT_DEFAULT_ERROR_DOC = """
|
|
ValueError: In case of unknown `mode` or `data_format` argument."""
|
|
|
|
PREPROCESS_INPUT_ERROR_DOC = """
|
|
ValueError: In case of unknown `data_format` argument."""
|
|
|
|
PREPROCESS_INPUT_RET_DOC_TF = """
|
|
The inputs pixel values are scaled between -1 and 1, sample-wise."""
|
|
|
|
PREPROCESS_INPUT_RET_DOC_TORCH = """
|
|
The input pixels values are scaled between 0 and 1 and each channel is
|
|
normalized with respect to the ImageNet dataset."""
|
|
|
|
PREPROCESS_INPUT_RET_DOC_CAFFE = """
|
|
The images are converted from RGB to BGR, then each color channel is
|
|
zero-centered with respect to the ImageNet dataset, without scaling."""
|
|
|
|
|
|
@keras_export('keras.applications.imagenet_utils.preprocess_input')
|
|
def preprocess_input(x, data_format=None, mode='caffe'):
|
|
"""Preprocesses a tensor or Numpy array encoding a batch of images."""
|
|
if mode not in {'caffe', 'tf', 'torch'}:
|
|
raise ValueError('Unknown mode ' + str(mode))
|
|
|
|
if data_format is None:
|
|
data_format = backend.image_data_format()
|
|
elif data_format not in {'channels_first', 'channels_last'}:
|
|
raise ValueError('Unknown data_format ' + str(data_format))
|
|
|
|
if isinstance(x, np.ndarray):
|
|
return _preprocess_numpy_input(
|
|
x, data_format=data_format, mode=mode)
|
|
else:
|
|
return _preprocess_symbolic_input(
|
|
x, data_format=data_format, mode=mode)
|
|
|
|
|
|
preprocess_input.__doc__ = PREPROCESS_INPUT_DOC.format(
|
|
mode=PREPROCESS_INPUT_MODE_DOC,
|
|
ret='',
|
|
error=PREPROCESS_INPUT_DEFAULT_ERROR_DOC)
|
|
|
|
|
|
@keras_export('keras.applications.imagenet_utils.decode_predictions')
|
|
def decode_predictions(preds, top=5):
|
|
"""Decodes the prediction of an ImageNet model.
|
|
|
|
Arguments:
|
|
preds: Numpy array encoding a batch of predictions.
|
|
top: Integer, how many top-guesses to return. Defaults to 5.
|
|
|
|
Returns:
|
|
A list of lists of top class prediction tuples
|
|
`(class_name, class_description, score)`.
|
|
One list of tuples per sample in batch input.
|
|
|
|
Raises:
|
|
ValueError: In case of invalid shape of the `pred` array
|
|
(must be 2D).
|
|
"""
|
|
global CLASS_INDEX
|
|
|
|
if len(preds.shape) != 2 or preds.shape[1] != 1000:
|
|
raise ValueError('`decode_predictions` expects '
|
|
'a batch of predictions '
|
|
'(i.e. a 2D array of shape (samples, 1000)). '
|
|
'Found array with shape: ' + str(preds.shape))
|
|
if CLASS_INDEX is None:
|
|
fpath = data_utils.get_file(
|
|
'imagenet_class_index.json',
|
|
CLASS_INDEX_PATH,
|
|
cache_subdir='models',
|
|
file_hash='c2c37ea517e94d9795004a39431a14cb')
|
|
with open(fpath) as f:
|
|
CLASS_INDEX = json.load(f)
|
|
results = []
|
|
for pred in preds:
|
|
top_indices = pred.argsort()[-top:][::-1]
|
|
result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
|
|
result.sort(key=lambda x: x[2], reverse=True)
|
|
results.append(result)
|
|
return results
|
|
|
|
|
|
def _preprocess_numpy_input(x, data_format, mode):
|
|
"""Preprocesses a Numpy array encoding a batch of images.
|
|
|
|
Arguments:
|
|
x: Input array, 3D or 4D.
|
|
data_format: Data format of the image array.
|
|
mode: One of "caffe", "tf" or "torch".
|
|
- caffe: will convert the images from RGB to BGR,
|
|
then will zero-center each color channel with
|
|
respect to the ImageNet dataset,
|
|
without scaling.
|
|
- tf: will scale pixels between -1 and 1,
|
|
sample-wise.
|
|
- torch: will scale pixels between 0 and 1 and then
|
|
will normalize each channel with respect to the
|
|
ImageNet dataset.
|
|
|
|
Returns:
|
|
Preprocessed Numpy array.
|
|
"""
|
|
if not issubclass(x.dtype.type, np.floating):
|
|
x = x.astype(backend.floatx(), copy=False)
|
|
|
|
if mode == 'tf':
|
|
x /= 127.5
|
|
x -= 1.
|
|
return x
|
|
elif mode == 'torch':
|
|
x /= 255.
|
|
mean = [0.485, 0.456, 0.406]
|
|
std = [0.229, 0.224, 0.225]
|
|
else:
|
|
if data_format == 'channels_first':
|
|
# 'RGB'->'BGR'
|
|
if x.ndim == 3:
|
|
x = x[::-1, ...]
|
|
else:
|
|
x = x[:, ::-1, ...]
|
|
else:
|
|
# 'RGB'->'BGR'
|
|
x = x[..., ::-1]
|
|
mean = [103.939, 116.779, 123.68]
|
|
std = None
|
|
|
|
# Zero-center by mean pixel
|
|
if data_format == 'channels_first':
|
|
if x.ndim == 3:
|
|
x[0, :, :] -= mean[0]
|
|
x[1, :, :] -= mean[1]
|
|
x[2, :, :] -= mean[2]
|
|
if std is not None:
|
|
x[0, :, :] /= std[0]
|
|
x[1, :, :] /= std[1]
|
|
x[2, :, :] /= std[2]
|
|
else:
|
|
x[:, 0, :, :] -= mean[0]
|
|
x[:, 1, :, :] -= mean[1]
|
|
x[:, 2, :, :] -= mean[2]
|
|
if std is not None:
|
|
x[:, 0, :, :] /= std[0]
|
|
x[:, 1, :, :] /= std[1]
|
|
x[:, 2, :, :] /= std[2]
|
|
else:
|
|
x[..., 0] -= mean[0]
|
|
x[..., 1] -= mean[1]
|
|
x[..., 2] -= mean[2]
|
|
if std is not None:
|
|
x[..., 0] /= std[0]
|
|
x[..., 1] /= std[1]
|
|
x[..., 2] /= std[2]
|
|
return x
|
|
|
|
|
|
def _preprocess_symbolic_input(x, data_format, mode):
|
|
"""Preprocesses a tensor encoding a batch of images.
|
|
|
|
Arguments:
|
|
x: Input tensor, 3D or 4D.
|
|
data_format: Data format of the image tensor.
|
|
mode: One of "caffe", "tf" or "torch".
|
|
- caffe: will convert the images from RGB to BGR,
|
|
then will zero-center each color channel with
|
|
respect to the ImageNet dataset,
|
|
without scaling.
|
|
- tf: will scale pixels between -1 and 1,
|
|
sample-wise.
|
|
- torch: will scale pixels between 0 and 1 and then
|
|
will normalize each channel with respect to the
|
|
ImageNet dataset.
|
|
|
|
Returns:
|
|
Preprocessed tensor.
|
|
"""
|
|
if mode == 'tf':
|
|
x /= 127.5
|
|
x -= 1.
|
|
return x
|
|
elif mode == 'torch':
|
|
x /= 255.
|
|
mean = [0.485, 0.456, 0.406]
|
|
std = [0.229, 0.224, 0.225]
|
|
else:
|
|
if data_format == 'channels_first':
|
|
# 'RGB'->'BGR'
|
|
if backend.ndim(x) == 3:
|
|
x = x[::-1, ...]
|
|
else:
|
|
x = x[:, ::-1, ...]
|
|
else:
|
|
# 'RGB'->'BGR'
|
|
x = x[..., ::-1]
|
|
mean = [103.939, 116.779, 123.68]
|
|
std = None
|
|
|
|
mean_tensor = backend.constant(-np.array(mean))
|
|
|
|
# Zero-center by mean pixel
|
|
if backend.dtype(x) != backend.dtype(mean_tensor):
|
|
x = backend.bias_add(
|
|
x, backend.cast(mean_tensor, backend.dtype(x)), data_format=data_format)
|
|
else:
|
|
x = backend.bias_add(x, mean_tensor, data_format)
|
|
if std is not None:
|
|
x /= std
|
|
return x
|
|
|
|
|
|
def obtain_input_shape(input_shape,
|
|
default_size,
|
|
min_size,
|
|
data_format,
|
|
require_flatten,
|
|
weights=None):
|
|
"""Internal utility to compute/validate a model's input shape.
|
|
|
|
Arguments:
|
|
input_shape: Either None (will return the default network input shape),
|
|
or a user-provided shape to be validated.
|
|
default_size: Default input width/height for the model.
|
|
min_size: Minimum input width/height accepted by the model.
|
|
data_format: Image data format to use.
|
|
require_flatten: Whether the model is expected to
|
|
be linked to a classifier via a Flatten layer.
|
|
weights: One of `None` (random initialization)
|
|
or 'imagenet' (pre-training on ImageNet).
|
|
If weights='imagenet' input channels must be equal to 3.
|
|
|
|
Returns:
|
|
An integer shape tuple (may include None entries).
|
|
|
|
Raises:
|
|
ValueError: In case of invalid argument values.
|
|
"""
|
|
if weights != 'imagenet' and input_shape and len(input_shape) == 3:
|
|
if data_format == 'channels_first':
|
|
if input_shape[0] not in {1, 3}:
|
|
warnings.warn('This model usually expects 1 or 3 input channels. '
|
|
'However, it was passed an input_shape with ' +
|
|
str(input_shape[0]) + ' input channels.')
|
|
default_shape = (input_shape[0], default_size, default_size)
|
|
else:
|
|
if input_shape[-1] not in {1, 3}:
|
|
warnings.warn('This model usually expects 1 or 3 input channels. '
|
|
'However, it was passed an input_shape with ' +
|
|
str(input_shape[-1]) + ' input channels.')
|
|
default_shape = (default_size, default_size, input_shape[-1])
|
|
else:
|
|
if data_format == 'channels_first':
|
|
default_shape = (3, default_size, default_size)
|
|
else:
|
|
default_shape = (default_size, default_size, 3)
|
|
if weights == 'imagenet' and require_flatten:
|
|
if input_shape is not None:
|
|
if input_shape != default_shape:
|
|
raise ValueError('When setting `include_top=True` '
|
|
'and loading `imagenet` weights, '
|
|
'`input_shape` should be ' + str(default_shape) + '.')
|
|
return default_shape
|
|
if input_shape:
|
|
if data_format == 'channels_first':
|
|
if input_shape is not None:
|
|
if len(input_shape) != 3:
|
|
raise ValueError('`input_shape` must be a tuple of three integers.')
|
|
if input_shape[0] != 3 and weights == 'imagenet':
|
|
raise ValueError('The input must have 3 channels; got '
|
|
'`input_shape=' + str(input_shape) + '`')
|
|
if ((input_shape[1] is not None and input_shape[1] < min_size) or
|
|
(input_shape[2] is not None and input_shape[2] < min_size)):
|
|
raise ValueError('Input size must be at least ' + str(min_size) +
|
|
'x' + str(min_size) + '; got `input_shape=' +
|
|
str(input_shape) + '`')
|
|
else:
|
|
if input_shape is not None:
|
|
if len(input_shape) != 3:
|
|
raise ValueError('`input_shape` must be a tuple of three integers.')
|
|
if input_shape[-1] != 3 and weights == 'imagenet':
|
|
raise ValueError('The input must have 3 channels; got '
|
|
'`input_shape=' + str(input_shape) + '`')
|
|
if ((input_shape[0] is not None and input_shape[0] < min_size) or
|
|
(input_shape[1] is not None and input_shape[1] < min_size)):
|
|
raise ValueError('Input size must be at least ' + str(min_size) +
|
|
'x' + str(min_size) + '; got `input_shape=' +
|
|
str(input_shape) + '`')
|
|
else:
|
|
if require_flatten:
|
|
input_shape = default_shape
|
|
else:
|
|
if data_format == 'channels_first':
|
|
input_shape = (3, None, None)
|
|
else:
|
|
input_shape = (None, None, 3)
|
|
if require_flatten:
|
|
if None in input_shape:
|
|
raise ValueError('If `include_top` is True, '
|
|
'you should specify a static `input_shape`. '
|
|
'Got `input_shape=' + str(input_shape) + '`')
|
|
return input_shape
|
|
|
|
|
|
def correct_pad(inputs, kernel_size):
|
|
"""Returns a tuple for zero-padding for 2D convolution with downsampling.
|
|
|
|
Arguments:
|
|
inputs: Input tensor.
|
|
kernel_size: An integer or tuple/list of 2 integers.
|
|
|
|
Returns:
|
|
A tuple.
|
|
"""
|
|
img_dim = 2 if backend.image_data_format() == 'channels_first' else 1
|
|
input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
|
|
if isinstance(kernel_size, int):
|
|
kernel_size = (kernel_size, kernel_size)
|
|
if input_size[0] is None:
|
|
adjust = (1, 1)
|
|
else:
|
|
adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
|
|
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
|
|
return ((correct[0] - adjust[0], correct[0]),
|
|
(correct[1] - adjust[1], correct[1]))
|
|
|
|
|
|
def validate_activation(classifier_activation, weights):
|
|
"""validates that the classifer_activation is compatible with the weights.
|
|
|
|
Args:
|
|
classifier_activation: str or callable activation function
|
|
weights: The pretrained weights to load.
|
|
|
|
Raises:
|
|
ValueError: if an activation other than `None` or `softmax` are used with
|
|
pretrained weights.
|
|
"""
|
|
if weights is None:
|
|
return
|
|
|
|
classifier_activation = activations.get(classifier_activation)
|
|
if classifier_activation not in {
|
|
activations.get('softmax'),
|
|
activations.get(None)
|
|
}:
|
|
raise ValueError('Only `None` and `softmax` activations are allowed '
|
|
'for the `classifier_activation` argument when using '
|
|
'pretrained weights, with `include_top=True`')
|