It is possible that v0 is a _TupleWrapper object wrapping a namedtuple instead of a namedtuple itself. The class _TupleWrapper does not have the class method _make, but it should have the instance method _make which calls the namedtuple class method. Instances of a namedtuple also have the instance method _make which calls the relevant class method. This will allow the code to work for both cases. PiperOrigin-RevId: 325815594 Change-Id: I209f8ec5a8617f72183e4c12937b4429321e7b4f
227 lines
9.3 KiB
Python
227 lines
9.3 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for utility functions in distribute_utils."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
|
|
from absl.testing import parameterized
|
|
import wrapt
|
|
|
|
from tensorflow.python.distribute import combinations
|
|
from tensorflow.python.distribute import distribute_utils
|
|
from tensorflow.python.distribute import strategy_combinations
|
|
from tensorflow.python.distribute import values
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.eager import test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.saved_model.model_utils import mode_keys
|
|
|
|
|
|
def _nested_value(d):
|
|
return ("a" + d, ["b" + d, {"c": "d" + d, "e": "f" + d}, "g" + d], "h" + d)
|
|
|
|
|
|
class RegroupAndSelectDeviceTest(test.TestCase, parameterized.TestCase):
|
|
|
|
def _is_per_replica(self, result, expected, klass=values.PerReplica):
|
|
self.assertIsInstance(result, klass)
|
|
for i, exp in enumerate(expected):
|
|
self.assertEqual(exp, result.values[i])
|
|
|
|
def testNested(self):
|
|
result = distribute_utils.regroup((_nested_value("1"), _nested_value("2")))
|
|
self.assertIsInstance(result, tuple)
|
|
self.assertLen(result, 3)
|
|
self._is_per_replica(result[0], ["a1", "a2"])
|
|
self._is_per_replica(result[2], ["h1", "h2"])
|
|
|
|
self.assertIsInstance(result[1], list)
|
|
self.assertLen(result[1], 3)
|
|
self._is_per_replica(result[1][0], ["b1", "b2"])
|
|
self._is_per_replica(result[1][2], ["g1", "g2"])
|
|
|
|
self.assertIsInstance(result[1][1], dict)
|
|
self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
|
|
self._is_per_replica(result[1][1]["c"], ["d1", "d2"])
|
|
self._is_per_replica(result[1][1]["e"], ["f1", "f2"])
|
|
|
|
# Also test that we can undo the merge using select_replica()
|
|
self.assertEqual(_nested_value("1"),
|
|
distribute_utils.select_replica(0, result))
|
|
self.assertEqual(_nested_value("2"),
|
|
distribute_utils.select_replica(1, result))
|
|
# select_device_mirrored() should fail due to non-mirrored values
|
|
with self.assertRaises(TypeError):
|
|
distribute_utils.select_replica_mirrored(0, result)
|
|
with self.assertRaises(TypeError):
|
|
distribute_utils.select_replica_mirrored(1, result)
|
|
|
|
def testRegroupKeepsDictBasedClass(self):
|
|
class DictBasedClass(dict):
|
|
"""Dummy class inherited from a dict."""
|
|
|
|
result = distribute_utils.regroup(
|
|
(DictBasedClass(a="a1", b="b1"), DictBasedClass(a="a2", b="b2")))
|
|
self.assertIsInstance(result, DictBasedClass)
|
|
self._is_per_replica(result["a"], ["a1", "a2"])
|
|
self._is_per_replica(result["b"], ["b1", "b2"])
|
|
|
|
def testWrapClass(self):
|
|
# Normally a mirrored value would be the same across devices, but
|
|
# for a test it is convenient to be able to tell the values apart.
|
|
result = distribute_utils.regroup((_nested_value("1"), _nested_value("2")),
|
|
values.Mirrored)
|
|
self.assertIsInstance(result, tuple)
|
|
self.assertLen(result, 3)
|
|
self._is_per_replica(result[0], ["a1", "a2"], values.Mirrored)
|
|
self._is_per_replica(result[2], ["h1", "h2"], values.Mirrored)
|
|
|
|
self.assertIsInstance(result[1], list)
|
|
self.assertLen(result[1], 3)
|
|
self._is_per_replica(result[1][0], ["b1", "b2"], values.Mirrored)
|
|
self._is_per_replica(result[1][2], ["g1", "g2"], values.Mirrored)
|
|
|
|
self.assertIsInstance(result[1][1], dict)
|
|
self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
|
|
self._is_per_replica(result[1][1]["c"], ["d1", "d2"], values.Mirrored)
|
|
self._is_per_replica(result[1][1]["e"], ["f1", "f2"], values.Mirrored)
|
|
|
|
# Also test that we can undo the merge using select_replica()
|
|
self.assertEqual(_nested_value("1"),
|
|
distribute_utils.select_replica(0, result))
|
|
self.assertEqual(_nested_value("2"),
|
|
distribute_utils.select_replica(1, result))
|
|
# Values are marked as mirrored, so select_device_mirrored() is allowed.
|
|
self.assertEqual(_nested_value("1"),
|
|
distribute_utils.select_replica_mirrored(0, result))
|
|
self.assertEqual(_nested_value("2"),
|
|
distribute_utils.select_replica_mirrored(1, result))
|
|
|
|
def testWrapAListOfTwoTuples(self):
|
|
result = distribute_utils.regroup([("1", "2"), ("3", "4")])
|
|
self.assertIsInstance(result, tuple)
|
|
self.assertLen(result, 2)
|
|
self._is_per_replica(result[0], ("1", "3"), values.PerReplica)
|
|
self._is_per_replica(result[1], ("2", "4"), values.PerReplica)
|
|
|
|
@combinations.generate(
|
|
combinations.combine(
|
|
distribution=[
|
|
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
|
strategy_combinations.mirrored_strategy_with_one_cpu,
|
|
],
|
|
mode=["graph", "eager"],
|
|
))
|
|
def testMirroredContainer(self, distribution):
|
|
with distribution.scope():
|
|
v = variable_scope.variable(
|
|
1., aggregation=variable_scope.VariableAggregation.SUM)
|
|
self.assertTrue(distribute_utils.is_distributed_variable(v))
|
|
self.assertTrue(distribute_utils.is_distributed_variable(
|
|
distribute_utils.regroup(v.values)))
|
|
|
|
def testSameId(self):
|
|
foo = object()
|
|
result = distribute_utils.regroup((("a", foo), ("b", foo)))
|
|
self.assertIsInstance(result, tuple)
|
|
self.assertLen(result, 2)
|
|
self._is_per_replica(result[0], ["a", "b"])
|
|
self.assertIs(foo, result[1])
|
|
|
|
# Test select_replica(), should undo the merge done by regroup().
|
|
result_0 = distribute_utils.select_replica(0, result)
|
|
self.assertIsInstance(result_0, tuple)
|
|
self.assertLen(result_0, 2)
|
|
self.assertEqual("a", result_0[0])
|
|
self.assertIs(foo, result_0[1])
|
|
result_1 = distribute_utils.select_replica(1, result)
|
|
self.assertIsInstance(result_1, tuple)
|
|
self.assertLen(result_1, 2)
|
|
self.assertEqual("b", result_1[0])
|
|
self.assertIs(foo, result_1[1])
|
|
|
|
def testOneDevice(self):
|
|
result = distribute_utils.regroup((_nested_value("1"),))
|
|
# On one device regroup() and select_replica() are basically identity.
|
|
self.assertEqual(_nested_value("1"), result)
|
|
self.assertEqual(_nested_value("1"),
|
|
distribute_utils.select_replica(0, result))
|
|
|
|
def testNamedTuple(self):
|
|
|
|
# We include toy implementations of Scaffold and EstimatorSpec to
|
|
# avoid a dependency on Estimator here.
|
|
|
|
class Scaffold(object):
|
|
pass
|
|
|
|
class EstimatorSpec(collections.namedtuple(
|
|
"EstimatorSpec", ["mode", "loss", "train_op", "scaffold"])):
|
|
|
|
def __new__(cls, mode, loss, train_op, scaffold=None):
|
|
return super(EstimatorSpec, cls).__new__(
|
|
cls, mode=mode, loss=loss, train_op=train_op,
|
|
scaffold=scaffold or Scaffold())
|
|
|
|
with context.graph_mode(), ops.Graph().as_default():
|
|
created_estimator_specs = []
|
|
|
|
for device_id in range(3):
|
|
spec = EstimatorSpec(
|
|
mode=mode_keys.EstimatorModeKeys.TRAIN,
|
|
loss=constant_op.constant(device_id / 2),
|
|
train_op=array_ops.identity(constant_op.constant(device_id)))
|
|
created_estimator_specs.append(spec)
|
|
|
|
merged_estimator_spec = distribute_utils.regroup(created_estimator_specs)
|
|
|
|
self.assertIsInstance(merged_estimator_spec, EstimatorSpec)
|
|
self.assertEqual(mode_keys.EstimatorModeKeys.TRAIN,
|
|
merged_estimator_spec.mode)
|
|
for device_id in range(3):
|
|
self.assertEqual(created_estimator_specs[device_id].loss,
|
|
merged_estimator_spec.loss.values[device_id])
|
|
self.assertEqual(created_estimator_specs[device_id].train_op,
|
|
merged_estimator_spec.train_op.values[device_id])
|
|
# Scaffold is populated by `EstimatorSpec.__new__`.
|
|
self.assertEqual(created_estimator_specs[device_id].scaffold,
|
|
merged_estimator_spec.scaffold.values[device_id])
|
|
self.assertIsInstance(created_estimator_specs[device_id].scaffold,
|
|
Scaffold)
|
|
# Also test that we can undo the merge using select_replica()
|
|
self.assertEqual(created_estimator_specs[device_id],
|
|
distribute_utils.select_replica(
|
|
device_id, merged_estimator_spec))
|
|
|
|
def testWrappedNamedTuple(self):
|
|
Point = collections.namedtuple("Point", ["x", "y"])
|
|
point1 = Point(x=0, y=2)
|
|
point2 = Point(x=1, y=3)
|
|
wrapped1 = wrapt.ObjectProxy(point1)
|
|
wrapped2 = wrapt.ObjectProxy(point2)
|
|
result = distribute_utils.regroup([wrapped1, wrapped2])
|
|
self.assertEqual(result.x.values, (0, 1))
|
|
self.assertEqual(result.y.values, (2, 3))
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|