This is mostly the result of an internal cleanup and formatting pass. PiperOrigin-RevId: 286318018 Change-Id: I8f9e2f7519070035da73f9f24d2fc90864abc51b
136 lines
5.0 KiB
Python
136 lines
5.0 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for checkpoint_utils.init_from_checkpoint with Distribution Strategy.
|
|
|
|
These tests are located here instead of as part of
|
|
`python.training.CheckpointsTest` because they need access to distribution
|
|
strategies which are only present in contrib right now.
|
|
TODO(priyag): Move the tests to core `python.training.CheckpointsTest` when
|
|
distribution strategy moves out of contrib.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
from absl.testing import parameterized
|
|
|
|
from tensorflow.python.distribute import combinations
|
|
from tensorflow.python.distribute import strategy_combinations
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import checkpoint_utils
|
|
from tensorflow.python.training import saver as saver_lib
|
|
|
|
|
|
def _create_checkpoints(sess, checkpoint_dir):
|
|
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
|
|
checkpoint_state_name = "checkpoint"
|
|
v1 = variable_scope.get_variable("var1", [1, 10])
|
|
v2 = variable_scope.get_variable("var2", [10, 10])
|
|
sess.run(variables.global_variables_initializer())
|
|
v1_value, v2_value = sess.run([v1, v2])
|
|
saver = saver_lib.Saver()
|
|
saver.save(
|
|
sess,
|
|
checkpoint_prefix,
|
|
global_step=0,
|
|
latest_filename=checkpoint_state_name)
|
|
return v1_value, v2_value
|
|
|
|
|
|
class CheckpointUtilsWithDistributionStrategyTest(
|
|
test.TestCase, parameterized.TestCase):
|
|
|
|
def _get_test_object(self):
|
|
checkpoint_dir = self.get_temp_dir()
|
|
with self.cached_session() as session:
|
|
v1, v2 = _create_checkpoints(session, checkpoint_dir)
|
|
return checkpoint_dir, v1, v2
|
|
|
|
@combinations.generate(
|
|
combinations.combine(
|
|
distribution=[
|
|
strategy_combinations.default_strategy,
|
|
strategy_combinations.one_device_strategy,
|
|
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
|
strategy_combinations.mirrored_strategy_with_two_gpus,
|
|
],
|
|
in_replica_mode=[True, False],
|
|
mode=["graph"]))
|
|
def testInitFromCheckpoint(self, distribution, in_replica_mode):
|
|
checkpoint_dir, v1_value, v2_value = self._get_test_object()
|
|
|
|
def init_and_verify(g):
|
|
v1 = variable_scope.get_variable("new_var1", [1, 10])
|
|
v2 = variable_scope.get_variable(
|
|
"new_var2", [10, 10],
|
|
synchronization=variable_scope.VariableSynchronization.ON_READ,
|
|
aggregation=variable_scope.VariableAggregation.MEAN)
|
|
checkpoint_utils.init_from_checkpoint(checkpoint_dir, {
|
|
"var1": "new_var1",
|
|
"var2": "new_var2"
|
|
})
|
|
with self.session(graph=g) as session:
|
|
session.run(variables.global_variables_initializer())
|
|
self.assertAllEqual(v1_value, self.evaluate(v1))
|
|
self.assertAllEqual(v2_value, self.evaluate(v2))
|
|
|
|
with ops.Graph().as_default() as g, distribution.scope():
|
|
if in_replica_mode:
|
|
distribution.extended.call_for_each_replica(init_and_verify, args=[g])
|
|
else:
|
|
init_and_verify(g)
|
|
|
|
@combinations.generate(
|
|
combinations.combine(
|
|
distribution=[
|
|
strategy_combinations.default_strategy,
|
|
strategy_combinations.one_device_strategy,
|
|
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
|
strategy_combinations.mirrored_strategy_with_two_gpus,
|
|
],
|
|
in_replica_mode=[True, False],
|
|
mode=["graph"]))
|
|
def testInitFromDifferentNameObject(self, distribution, in_replica_mode):
|
|
checkpoint_dir, v1_value, _ = self._get_test_object()
|
|
|
|
def init_and_verify(g):
|
|
v1 = variable_scope.get_variable("new_var1", [1, 10])
|
|
# Use string add to create new object in each replica
|
|
prefix = "new_"
|
|
suffix = "var1"
|
|
new_var1 = prefix + suffix
|
|
checkpoint_utils.init_from_checkpoint(checkpoint_dir, {
|
|
"var1": new_var1,
|
|
})
|
|
with self.test_session(graph=g) as session:
|
|
session.run(variables.global_variables_initializer())
|
|
self.assertAllEqual(v1_value, self.evaluate(v1))
|
|
|
|
with ops.Graph().as_default() as g, distribution.scope():
|
|
if in_replica_mode:
|
|
distribution.extended.call_for_each_replica(init_and_verify, [g])
|
|
else:
|
|
init_and_verify(g)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|