STT-tensorflow/tensorflow/python/data/benchmarks/batch_benchmark.py
Jiri Simsa 0c23c60a1a [tf.data] Implementing parallel batching logic.
This CL adds experimental support for parallel batching to `batch()` and `padded_batch()`. This functionality can be enabled through tf.data.Options():

options = tf.data.Options()
options.experimental_optimization.parallel_batch = True
dataset = dataset.with_options(options)
PiperOrigin-RevId: 244455315
2019-04-19 18:34:53 -07:00

73 lines
2.8 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Benchmarks for `tf.data.Dataset.batch()`."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.data.benchmarks import benchmark_base
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import sparse_tensor
class BatchBenchmark(benchmark_base.DatasetBenchmarkBase):
"""Benchmarks for `tf.data.Dataset.batch()`."""
def benchmark_batch_sparse(self):
non_zeros_per_row_values = [0, 1, 5, 10, 100]
batch_size_values = [1, 32, 64, 128, 1024]
for non_zeros_per_row in non_zeros_per_row_values:
tensor = sparse_tensor.SparseTensor(
indices=np.arange(non_zeros_per_row, dtype=np.int64)[:, np.newaxis],
values=np.arange(non_zeros_per_row, dtype=np.int64),
dense_shape=[1000])
for batch_size in batch_size_values:
dataset = dataset_ops.Dataset.from_tensors(tensor).repeat().batch(
batch_size)
self.run_and_report_benchmark(
dataset,
num_elements=100000 // batch_size,
iters=1,
name="sparse_num_elements_%d_batch_size_%d" % (non_zeros_per_row,
batch_size))
def benchmark_batch_dense(self):
for element_exp in [10, 12, 14, 16, 18, 20, 22]:
for batch_exp in [3, 6, 9]:
for parallel_copy in [True, False]:
element_size = 1 << element_exp
batch_size = 1 << batch_exp
dataset = dataset_ops.Dataset.from_tensors(
np.random.rand(element_size)).repeat().batch(batch_size)
options = dataset_ops.Options()
options.experimental_optimization.parallel_batch = parallel_copy
dataset = dataset.with_options(options)
tag = "_parallel" if parallel_copy else ""
self.run_and_report_benchmark(
dataset,
num_elements=(1 << (22 - batch_exp - element_exp // 2)),
iters=1,
name="batch_element_size_%d_batch_size_%d%s" %
(element_size, batch_size, tag))
if __name__ == "__main__":
benchmark_base.test.main()