Advait Jain b7a121f7d2 Manually fix licenses for the files to ensure consistent formatting.
Once this change is merged, we can turn on a presubmit check that tests
for the licenses.

Addresses http://b/175315163
2020-12-14 14:11:32 -08:00

146 lines
5.2 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/logistic.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/xtensa_hifi/xtensa_tf_micro_common.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
struct OpData {
int32_t input_zero_point;
int32_t input_range_radius;
int32_t input_multiplier;
int input_left_shift;
};
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
OpData* data) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
std::numeric_limits<int8_t>::min());
static constexpr int kInputIntegerBits = 4;
const double input_real_multiplier =
static_cast<double>(input->params.scale) *
static_cast<double>(1 << (31 - kInputIntegerBits));
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
data->input_range_radius =
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
}
return kTfLiteOk;
}
} // namespace
TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
OpData data;
CalculateArithmeticOpData(context, node, &data);
if (input->type == kTfLiteFloat32) {
switch (output->type) {
case kTfLiteFloat32: {
#if HIFI_VFPU
int err;
const float* inp_data_ptr;
float* out_data_ptr;
const RuntimeShape& input_shape = GetTensorShape(input);
const RuntimeShape& output_shape = GetTensorShape(output);
const int flat_size = MatchingFlatSize(input_shape, output_shape);
inp_data_ptr = GetTensorData<float>(input);
out_data_ptr = GetTensorData<float>(output);
err = xa_nn_vec_sigmoid_f32_f32(out_data_ptr, inp_data_ptr, flat_size);
CHECK_ERR_HIFI_NNLIB_KER(err, "xa_nn_vec_sigmoid_f32_f32 failed");
#else
reference_ops::Logistic(
GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
#endif /* HIFI_VFPU */
return kTfLiteOk;
}
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (input->type == kTfLiteInt8) {
switch (output->type) {
case kTfLiteInt8: {
reference_integer_ops::Logistic(
input->params.zero_point, data.input_range_radius,
data.input_multiplier, data.input_left_shift,
NumElements(input->dims), GetTensorData<int8_t>(input),
GetTensorData<int8_t>(output));
return kTfLiteOk;
}
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else {
// TODO(b/141211002): Also support other data types once we have supported
// temporary tensors in TFLM.
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace activations
TfLiteRegistration Register_LOGISTIC() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/activations::LogisticEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite