STT-tensorflow/tensorflow/lite/micro/kernels/softmax.cc
Advait Jain 24d00f249d Switch TFLM softmax kernels to flat namespace.
This is incremental progress towards a flat namespace for TFLM. See
https://abseil.io/tips/130 for more context.

PiperOrigin-RevId: 335948052
Change-Id: I0374fb08df58bf0d2d12b558e53cabdc68b28235
2020-10-07 14:32:58 -07:00

224 lines
9.2 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace {
// Softmax parameter data that persists in user_data
static constexpr int kInt16LUTArraySize = 513;
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
const TfLiteTensor* input,
TfLiteTensor* output,
const TfLiteSoftmaxParams* params,
SoftmaxParams* op_data) {
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
input->type == kTfLiteInt16) {
if (input->type == kTfLiteUInt8) {
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
} else if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
(0.001f * 1.f / 32768));
} else { // input->type == kTfLiteInt8
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
(0.001f * 1.f / 65536));
} else { // output->type == kTfLiteint8
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
}
}
static const int kScaledDiffIntegerBits = 5;
// Calculate input_multiplier and input_left_shift
if (input->type == kTfLiteInt16) {
int input_left_shift;
double input_scale_beta_rescale =
static_cast<double>(input->params.scale) *
static_cast<double>(params->beta) /
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
// correspond to [-10.0, 0.0]
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
&input_left_shift);
op_data->input_left_shift = input_left_shift;
} else {
int input_left_shift;
tflite::PreprocessSoftmaxScaling(
static_cast<double>(params->beta),
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
&op_data->input_multiplier, &input_left_shift);
op_data->input_left_shift = input_left_shift;
op_data->diff_min =
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
op_data->input_left_shift);
}
} else {
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
op_data->beta = static_cast<double>(params->beta);
}
return kTfLiteOk;
}
// Takes a tensor and performs softmax along the last dimension.
void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
if (input->type == kTfLiteUInt8) {
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else if (input->type == kTfLiteInt8) {
if (output->type == kTfLiteInt16) {
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
} else {
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} else {
tflite::reference_ops::SoftmaxInt16(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
}
}
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
}
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, node->user_data != nullptr);
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
// Only allocate LUTs for KTfLiteInt16 data type
if (input->type == kTfLiteInt16) {
void* raw_exp_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
op_data->one_over_one_plus_x_lut =
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
}
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt16);
} else {
TF_LITE_ENSURE_EQ(context, input->type, output->type);
}
// Populate LUT if required
if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
// exp LUT only used on negative values
// we consider exp(-10.0) is insignificant to accumulation
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
op_data->exp_lut, kInt16LUTArraySize);
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
op_data->zero_point = output->params.zero_point;
op_data->scale = output->params.scale;
}
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
return CalculateSoftmaxParams(context, input, output, params, op_data);
}
TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
TFLITE_DCHECK(node->user_data != nullptr);
SoftmaxParams op_data = *static_cast<SoftmaxParams*>(node->user_data);
switch (input->type) {
case kTfLiteFloat32: {
SoftmaxFloat(input, output, op_data);
return kTfLiteOk;
}
case kTfLiteInt8:
case kTfLiteUInt8:
case kTfLiteInt16: {
SoftmaxQuantized(input, output, op_data);
return kTfLiteOk;
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
}
} // namespace
TfLiteRegistration Register_SOFTMAX() {
return {/*init=*/SoftmaxInit,
/*free=*/nullptr,
/*prepare=*/SoftmaxPrepare,
/*invoke=*/SoftmaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace tflite