As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332520146 Change-Id: I405d986cfc653aaafcfdf4162c0acbd46220b921
255 lines
10 KiB
C++
255 lines
10 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/pad.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace pad {
|
|
namespace {
|
|
|
|
struct OpData {
|
|
PadParams params;
|
|
int32_t output_zero_point;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE(context, NumInputs(node) == 2 || NumInputs(node) == 3);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, /*index=*/0);
|
|
TF_LITE_ENSURE(context, input != nullptr);
|
|
const TfLiteTensor* paddings = GetInput(context, node, /*index=*/1);
|
|
TF_LITE_ENSURE(context, paddings != nullptr);
|
|
const TfLiteTensor* constant_values =
|
|
NumInputs(node) == 3 ? GetInput(context, node, /*index=*/2) : nullptr;
|
|
TfLiteTensor* output = GetOutput(context, node, /*index=*/0);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
|
|
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
|
|
|
// Current implementations rely on the inputs being <= 4D.
|
|
TF_LITE_ENSURE(context, NumDimensions(input) <=
|
|
reference_ops::PadKernelMaxDimensionCount());
|
|
|
|
if (constant_values != nullptr) {
|
|
TF_LITE_ENSURE_EQ(context, input->type, constant_values->type);
|
|
// Ensure that constant_values is a scalar.
|
|
TF_LITE_ENSURE_EQ(context, NumElements(constant_values), 1);
|
|
}
|
|
|
|
// There must be a pair of paddings for each output dimension.
|
|
TF_LITE_ENSURE_EQ(context, GetTensorShape(paddings).FlatSize(),
|
|
output->dims->size * 2);
|
|
|
|
// On Micro, outputs must be properly sized by the converter.
|
|
// NOTE: This data is only available because the paddings buffer is stored in
|
|
// the flatbuffer:
|
|
TF_LITE_ENSURE(context, IsConstantTensor(paddings));
|
|
const int32_t* paddings_data = GetTensorData<int32_t>(paddings);
|
|
for (int i = 0; i < output->dims->size; i++) {
|
|
int output_dim = output->dims->data[i];
|
|
int expected_dim =
|
|
input->dims->data[i] + paddings_data[i * 2] + paddings_data[i * 2 + 1];
|
|
TF_LITE_ENSURE_EQ(context, output_dim, expected_dim);
|
|
}
|
|
|
|
// Calculate OpData:
|
|
data->params.resizing_category = ResizingCategory::kGenericResize;
|
|
const int paddings_total = GetTensorShape(paddings).FlatSize();
|
|
if (paddings_total == 8 && (paddings_data[0] == 0 && paddings_data[1] == 0) &&
|
|
(paddings_data[6] == 0 && paddings_data[7] == 0)) {
|
|
data->params.resizing_category = ResizingCategory::kImageStyle;
|
|
}
|
|
|
|
const int num_input_dimensions = NumDimensions(input);
|
|
data->params.left_padding_count = num_input_dimensions;
|
|
data->params.right_padding_count = num_input_dimensions;
|
|
|
|
for (int idx = num_input_dimensions - 1; idx >= 0; --idx) {
|
|
data->params.left_padding[idx] = paddings_data[idx * 2];
|
|
data->params.right_padding[idx] = paddings_data[idx * 2 + 1];
|
|
}
|
|
|
|
if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
|
|
if (constant_values == nullptr) {
|
|
// Quantized Pad requires that 0 is represented in the quantized
|
|
// range.
|
|
if (input->type == kTfLiteUInt8) {
|
|
TF_LITE_ENSURE(context, output->params.zero_point >=
|
|
std::numeric_limits<uint8_t>::min());
|
|
TF_LITE_ENSURE(context, output->params.zero_point <=
|
|
std::numeric_limits<uint8_t>::max());
|
|
} else {
|
|
TF_LITE_ENSURE(context, output->params.zero_point >=
|
|
std::numeric_limits<int8_t>::min());
|
|
TF_LITE_ENSURE(context, output->params.zero_point <=
|
|
std::numeric_limits<int8_t>::max());
|
|
}
|
|
} else {
|
|
// Quantized Pad requires that 'constant_values' is represented in the
|
|
// same quantized range as the input and output tensors.
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
|
|
constant_values->params.zero_point);
|
|
TF_LITE_ENSURE_EQ(context, static_cast<double>(output->params.scale),
|
|
static_cast<double>(constant_values->params.scale));
|
|
}
|
|
data->output_zero_point = output->params.zero_point;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input =
|
|
tflite::micro::GetEvalInput(context, node, /*index=*/0);
|
|
const TfLiteEvalTensor* constant_values =
|
|
NumInputs(node) == 3
|
|
? tflite::micro::GetEvalInput(context, node, /*index=*/2)
|
|
: nullptr;
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, /*index=*/0);
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
float pad_value =
|
|
constant_values == nullptr
|
|
? 0.f
|
|
: *tflite::micro::GetTensorData<float>(constant_values);
|
|
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
|
|
reference_ops::PadImageStyle(
|
|
data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input), &pad_value,
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
} else {
|
|
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
&pad_value, tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
}
|
|
} break;
|
|
case kTfLiteUInt8: {
|
|
uint8_t pad_value;
|
|
if (constant_values == nullptr) {
|
|
pad_value = static_cast<uint8_t>(data->output_zero_point);
|
|
} else {
|
|
pad_value = *tflite::micro::GetTensorData<uint8_t>(constant_values);
|
|
}
|
|
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
|
|
reference_ops::PadImageStyle(
|
|
data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input), &pad_value,
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
} else {
|
|
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
&pad_value, tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
}
|
|
} break;
|
|
case kTfLiteInt8: {
|
|
int8_t pad_value;
|
|
if (constant_values == nullptr) {
|
|
pad_value = static_cast<uint8_t>(data->output_zero_point);
|
|
} else {
|
|
pad_value = *tflite::micro::GetTensorData<int8_t>(constant_values);
|
|
}
|
|
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
|
|
reference_ops::PadImageStyle(
|
|
data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input), &pad_value,
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
} else {
|
|
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
&pad_value, tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
}
|
|
} break;
|
|
case kTfLiteInt32: {
|
|
int32_t pad_value =
|
|
constant_values == nullptr
|
|
? 0
|
|
: *tflite::micro::GetTensorData<int32_t>(constant_values);
|
|
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int32_t>(input),
|
|
&pad_value, tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int32_t>(output));
|
|
} break;
|
|
default:
|
|
|
|
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported by Pad.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
#undef TF_LITE_PAD
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace pad
|
|
|
|
TfLiteRegistration Register_PAD() {
|
|
return {/*init=*/pad::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/pad::Prepare,
|
|
/*invoke=*/pad::Eval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
// Also register Pad as PadV2.
|
|
TfLiteRegistration Register_PADV2() {
|
|
return {/*init=*/pad::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/pad::Prepare,
|
|
/*invoke=*/pad::Eval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|