As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332520146 Change-Id: I405d986cfc653aaafcfdf4162c0acbd46220b921
143 lines
5.3 KiB
C++
143 lines
5.3 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/hard_swish.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/micro_utils.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace hard_swish {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(HardSwishParams));
|
|
}
|
|
|
|
TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TF_LITE_ENSURE(context, input != nullptr);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
|
|
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
|
HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
|
|
|
|
params->input_zero_point = input->params.zero_point;
|
|
params->output_zero_point = output->params.zero_point;
|
|
|
|
const float input_scale = input->params.scale;
|
|
const float hires_input_scale = (1.0f / 128.0f) * input_scale;
|
|
const float reluish_scale = 3.0f / 32768.0f;
|
|
const float output_scale = output->params.scale;
|
|
|
|
const double output_multiplier =
|
|
static_cast<double>(hires_input_scale / output_scale);
|
|
int32_t output_multiplier_fixedpoint_int32;
|
|
QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32,
|
|
¶ms->output_multiplier_exponent);
|
|
DownScaleInt32ToInt16Multiplier(
|
|
output_multiplier_fixedpoint_int32,
|
|
¶ms->output_multiplier_fixedpoint_int16);
|
|
|
|
TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0);
|
|
|
|
const double reluish_multiplier =
|
|
static_cast<double>(hires_input_scale / reluish_scale);
|
|
int32_t reluish_multiplier_fixedpoint_int32;
|
|
QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32,
|
|
¶ms->reluish_multiplier_exponent);
|
|
DownScaleInt32ToInt16Multiplier(
|
|
reluish_multiplier_fixedpoint_int32,
|
|
¶ms->reluish_multiplier_fixedpoint_int16);
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteEvalTensor* input =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
tflite::reference_ops::HardSwish<float>(
|
|
tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
} break;
|
|
case kTfLiteUInt8: {
|
|
tflite::reference_ops::HardSwish<uint8_t>(
|
|
*params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
} break;
|
|
case kTfLiteInt8: {
|
|
tflite::reference_ops::HardSwish<int8_t>(
|
|
*params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
} break;
|
|
default: {
|
|
TF_LITE_KERNEL_LOG(
|
|
context,
|
|
"Only float32/int8_t/uint8_t are supported currently, got %s",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace hard_swish
|
|
|
|
TfLiteRegistration Register_HARD_SWISH() {
|
|
return {/*init=*/hard_swish::HardSwishInit,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/hard_swish::HardSwishPrepare,
|
|
/*invoke=*/hard_swish::HardSwishEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|