As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332521299 Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
122 lines
4.3 KiB
C++
122 lines
4.3 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace where {
|
|
|
|
constexpr int kInputConditionTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
|
|
const TfLiteTensor* cond_tensor,
|
|
TfLiteTensor* output_tensor) {
|
|
// Output tensor should have shape:
|
|
// (num_true, cond_rank), where num_true denotes the number of true values
|
|
// in condition.
|
|
const RuntimeShape& cond_shape = GetTensorShape(cond_tensor);
|
|
const int size = cond_shape.FlatSize();
|
|
const int cond_rank = cond_shape.DimensionsCount();
|
|
const bool* cond_data = GetTensorData<bool>(cond_tensor);
|
|
|
|
int true_count = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
if (cond_data[i]) {
|
|
true_count++;
|
|
}
|
|
}
|
|
TfLiteIntArray* output_dims = TfLiteIntArrayCreate(2);
|
|
output_dims->data[0] = true_count;
|
|
output_dims->data[1] = cond_rank;
|
|
return context->ResizeTensor(context, output_tensor, output_dims);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* cond_tensor;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputConditionTensor,
|
|
&cond_tensor));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
if (cond_tensor->type != kTfLiteBool) {
|
|
context->ReportError(context,
|
|
"Condition tensor must be of type bool, but saw '%s'.",
|
|
TfLiteTypeGetName(cond_tensor->type));
|
|
return kTfLiteError;
|
|
}
|
|
|
|
// As output will be a 2D tensor of indices, use int64 to be consistent with
|
|
// tensorflow.
|
|
output->type = kTfLiteInt64;
|
|
|
|
// Exit early if cond is a non-const tensor. Set output tensor to dynamic so
|
|
// output size can be determined in Eval.
|
|
if (!IsConstantTensor(cond_tensor)) {
|
|
SetTensorToDynamic(output);
|
|
return kTfLiteOk;
|
|
}
|
|
return ResizeOutputTensor(context, cond_tensor, output);
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* cond_tensor;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputConditionTensor,
|
|
&cond_tensor));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
if (IsDynamicTensor(output)) {
|
|
TF_LITE_ENSURE_OK(context,
|
|
ResizeOutputTensor(context, cond_tensor, output));
|
|
}
|
|
|
|
TfLiteIntArray* dims = cond_tensor->dims;
|
|
if (dims->size == 0) {
|
|
// Scalar tensors are not supported.
|
|
TF_LITE_KERNEL_LOG(context, "Where op requires condition w/ rank > 0");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
reference_ops::SelectTrueCoords(GetTensorShape(cond_tensor),
|
|
GetTensorData<bool>(cond_tensor),
|
|
GetTensorData<int64_t>(output));
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace where
|
|
|
|
TfLiteRegistration* Register_WHERE() {
|
|
static TfLiteRegistration r = {/*init*/ nullptr, /*free*/ nullptr,
|
|
where::Prepare, where::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|