224 lines
8.5 KiB
C++
224 lines
8.5 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class BaseSquaredDifferenceOpModel : public SingleOpModel {
|
|
public:
|
|
BaseSquaredDifferenceOpModel(const TensorData& input1,
|
|
const TensorData& input2,
|
|
const TensorData& output) {
|
|
input1_ = AddInput(input1);
|
|
input2_ = AddInput(input2);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_SQUARED_DIFFERENCE,
|
|
BuiltinOptions_SquaredDifferenceOptions,
|
|
CreateSquaredDifferenceOptions(builder_).Union());
|
|
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
|
|
}
|
|
|
|
int input1() { return input1_; }
|
|
int input2() { return input2_; }
|
|
|
|
protected:
|
|
int input1_;
|
|
int input2_;
|
|
int output_;
|
|
};
|
|
|
|
class FloatSquaredDifferenceOpModel : public BaseSquaredDifferenceOpModel {
|
|
public:
|
|
using BaseSquaredDifferenceOpModel::BaseSquaredDifferenceOpModel;
|
|
|
|
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
|
};
|
|
|
|
class IntegerSquaredDifferenceOpModel : public BaseSquaredDifferenceOpModel {
|
|
public:
|
|
using BaseSquaredDifferenceOpModel::BaseSquaredDifferenceOpModel;
|
|
|
|
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
|
|
};
|
|
|
|
float GetTolerance(int min, int max) {
|
|
float kQuantizedStep = (max - min) / 255.0;
|
|
return kQuantizedStep;
|
|
}
|
|
|
|
class QuantizedSquaredDifferenceOpModel : public BaseSquaredDifferenceOpModel {
|
|
public:
|
|
using BaseSquaredDifferenceOpModel::BaseSquaredDifferenceOpModel;
|
|
|
|
template <typename integer_dtype>
|
|
std::vector<float> GetDequantizedOutput() {
|
|
return Dequantize<int8_t>(ExtractVector<int8_t>(output_), GetScale(output_),
|
|
GetZeroPoint(output_));
|
|
}
|
|
};
|
|
|
|
TEST(FloatSquaredDifferenceOpTest, FloatType_SameShape) {
|
|
FloatSquaredDifferenceOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}});
|
|
m.PopulateTensor<float>(m.input1(), {-0.2, 0.2, -1.2, 0.8});
|
|
m.PopulateTensor<float>(m.input2(), {0.5, 0.2, -1.5, 0.5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({0.49, 0.0, 0.09, 0.09})));
|
|
}
|
|
|
|
TEST(FloatSquaredDifferenceOpTest, FloatType_VariousInputShapes) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
FloatSquaredDifferenceOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}});
|
|
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.3, 0.8, 1.1, -2.0});
|
|
m.PopulateTensor<float>(m.input2(), {1.0, 0.2, 0.6, 0.4, -1.0, -0.0});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({9.0, 0.0, 0.09, 0.16, 4.41, 4.0})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(FloatSquaredDifferenceOpTest, FloatType_WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
FloatSquaredDifferenceOpModel m(
|
|
{TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, // always a scalar
|
|
{TensorType_FLOAT32, {}});
|
|
m.PopulateTensor<float>(m.input1(), {-0.2, 0.2, 0.5, 0.8, 0.11, 1.1});
|
|
m.PopulateTensor<float>(m.input2(), {0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({0.09, 0.01, 0.16, 0.49, 0.0001, 1.0})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerSquaredDifferenceOpTest, IntegerType_SameShape) {
|
|
IntegerSquaredDifferenceOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {}});
|
|
m.PopulateTensor<int32_t>(m.input1(), {-2, 2, -15, 8});
|
|
m.PopulateTensor<int32_t>(m.input2(), {5, -2, -3, 5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({49, 16, 144, 9}));
|
|
}
|
|
|
|
TEST(IntegerSquaredDifferenceOpTest, IntegerType_VariousInputShapes) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
IntegerSquaredDifferenceOpModel m({TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, {}});
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 3, 8, 11, -20});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 6, 5, -5, -20});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({441, 0, 9, 9, 256, 0}))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerSquaredDifferenceOpTest, IntegerType_WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
IntegerSquaredDifferenceOpModel m(
|
|
{TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, {}}, // always a scalar
|
|
{TensorType_INT32, {}});
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 10, 7, 3, 1, 13});
|
|
m.PopulateTensor<int32_t>(m.input2(), {3});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({529, 49, 16, 0, 4, 100}))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedSquaredDifferenceOpTest, Quantized_SameShape) {
|
|
float kQuantizedTolerance = GetTolerance(0, 1);
|
|
QuantizedSquaredDifferenceOpModel m(
|
|
{TensorType_INT8, {1, 2, 2, 1}, -1.2, 0.8},
|
|
{TensorType_INT8, {1, 2, 2, 1}, -1.5, 0.5},
|
|
{TensorType_INT8, {}, 0.0, 0.5});
|
|
m.QuantizeAndPopulate<int8_t>(m.input1(), {-0.2, 0.2, -1.2, 0.8});
|
|
m.QuantizeAndPopulate<int8_t>(m.input2(), {0.5, 0.2, -1.5, 0.5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetDequantizedOutput<int8_t>(),
|
|
ElementsAreArray(ArrayFloatNear({0.49, 0.0, 0.09, 0.09},
|
|
kQuantizedTolerance)));
|
|
}
|
|
|
|
TEST(QuantizedSquaredDifferenceOpTest, Quantized_VariousInputShapes) {
|
|
float kQuantizedTolerance = GetTolerance(0, 9);
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedSquaredDifferenceOpModel m(
|
|
{TensorType_INT8, test_shapes[i], -2.0, 1.7},
|
|
{TensorType_INT8, test_shapes[i], -1.0, 1.0},
|
|
{TensorType_INT8, {}, 0.0, 9.0});
|
|
m.QuantizeAndPopulate<int8_t>(m.input1(), {-2.0, 0.2, 0.3, 0.8, 1.1, -2.0});
|
|
m.QuantizeAndPopulate<int8_t>(m.input2(), {1.0, 0.2, 0.6, 0.4, -1.0, -0.0});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetDequantizedOutput<int8_t>(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{9.0, 0.0, 0.09, 0.16, 4.41, 4.0}, kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedSquaredDifferenceOpTest, Quantized_WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
float kQuantizedTolerance = GetTolerance(0, 1);
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedSquaredDifferenceOpModel m(
|
|
{TensorType_INT8, test_shapes[i], -0.2, 1.1},
|
|
{TensorType_INT8, {}, 0.0, 0.1}, {TensorType_INT8, {}, 0.0, 1.0});
|
|
m.QuantizeAndPopulate<int8_t>(m.input1(), {-0.2, 0.2, 0.5, 0.8, 0.11, 1.1});
|
|
m.QuantizeAndPopulate<int8_t>(m.input2(), {0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetDequantizedOutput<int8_t>(),
|
|
ElementsAreArray(ArrayFloatNear({0.09, 0.01, 0.16, 0.49, 0.0001, 1.0},
|
|
kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|