As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332521299 Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
137 lines
5.0 KiB
C++
137 lines
5.0 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace segment_sum {
|
|
|
|
static const int kInputDataTensor = 0;
|
|
static const int kInputSegmentIdsTensor = 1;
|
|
static const int kOutputTensor = 0;
|
|
|
|
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
|
|
const TfLiteTensor* data,
|
|
const TfLiteTensor* segment_ids,
|
|
TfLiteTensor* output) {
|
|
// Segment ids should be of same cardinality as first input dimension and they
|
|
// should be increasing by at most 1, from 0 (e.g., [0, 0, 1, 2, 3] is valid)
|
|
const int segment_id_size = segment_ids->dims->data[0];
|
|
TF_LITE_ENSURE_EQ(context, segment_id_size, data->dims->data[0]);
|
|
int previous_segment_id = -1;
|
|
for (int i = 0; i < segment_id_size; i++) {
|
|
const int current_segment_id = GetTensorData<int32_t>(segment_ids)[i];
|
|
if (i == 0) {
|
|
TF_LITE_ENSURE_EQ(context, current_segment_id, 0);
|
|
} else {
|
|
int delta = current_segment_id - previous_segment_id;
|
|
TF_LITE_ENSURE(context, delta == 0 || delta == 1);
|
|
}
|
|
previous_segment_id = current_segment_id;
|
|
}
|
|
|
|
const int max_index = previous_segment_id;
|
|
|
|
const int data_rank = NumDimensions(data);
|
|
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumDimensions(data));
|
|
output_shape->data[0] = max_index + 1;
|
|
for (int i = 1; i < data_rank; ++i) {
|
|
output_shape->data[i] = data->dims->data[i];
|
|
}
|
|
return context->ResizeTensor(context, output, output_shape);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
const TfLiteTensor* data;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetInputSafe(context, node, kInputDataTensor, &data));
|
|
const TfLiteTensor* segment_ids;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputSegmentIdsTensor,
|
|
&segment_ids));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
TF_LITE_ENSURE(context,
|
|
data->type == kTfLiteInt32 || data->type == kTfLiteFloat32);
|
|
TF_LITE_ENSURE_EQ(context, segment_ids->type, kTfLiteInt32);
|
|
|
|
if (!IsConstantTensor(data) || !IsConstantTensor(segment_ids)) {
|
|
SetTensorToDynamic(output);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
return ResizeOutputTensor(context, data, segment_ids, output);
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* data;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetInputSafe(context, node, kInputDataTensor, &data));
|
|
const TfLiteTensor* segment_ids;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputSegmentIdsTensor,
|
|
&segment_ids));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
if (IsDynamicTensor(output)) {
|
|
TF_LITE_ENSURE_OK(context,
|
|
ResizeOutputTensor(context, data, segment_ids, output));
|
|
}
|
|
|
|
#define TF_LITE_SEGMENT_SUM(dtype) \
|
|
reference_ops::SegmentSum<dtype>( \
|
|
GetTensorShape(data), GetTensorData<dtype>(data), \
|
|
GetTensorShape(segment_ids), GetTensorData<int32_t>(segment_ids), \
|
|
GetTensorShape(output), GetTensorData<dtype>(output));
|
|
switch (data->type) {
|
|
case kTfLiteInt32:
|
|
TF_LITE_SEGMENT_SUM(int32_t);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
TF_LITE_SEGMENT_SUM(float);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Currently SegmentSum doesn't support type: %s",
|
|
TfLiteTypeGetName(data->type));
|
|
return kTfLiteError;
|
|
}
|
|
#undef TF_LITE_SEGMENT_SUM
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace segment_sum
|
|
|
|
TfLiteRegistration* Register_SEGMENT_SUM() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, segment_sum::Prepare,
|
|
segment_sum::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|