STT-tensorflow/tensorflow/lite/kernels/segment_sum.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

137 lines
5.0 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace segment_sum {
static const int kInputDataTensor = 0;
static const int kInputSegmentIdsTensor = 1;
static const int kOutputTensor = 0;
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
const TfLiteTensor* data,
const TfLiteTensor* segment_ids,
TfLiteTensor* output) {
// Segment ids should be of same cardinality as first input dimension and they
// should be increasing by at most 1, from 0 (e.g., [0, 0, 1, 2, 3] is valid)
const int segment_id_size = segment_ids->dims->data[0];
TF_LITE_ENSURE_EQ(context, segment_id_size, data->dims->data[0]);
int previous_segment_id = -1;
for (int i = 0; i < segment_id_size; i++) {
const int current_segment_id = GetTensorData<int32_t>(segment_ids)[i];
if (i == 0) {
TF_LITE_ENSURE_EQ(context, current_segment_id, 0);
} else {
int delta = current_segment_id - previous_segment_id;
TF_LITE_ENSURE(context, delta == 0 || delta == 1);
}
previous_segment_id = current_segment_id;
}
const int max_index = previous_segment_id;
const int data_rank = NumDimensions(data);
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumDimensions(data));
output_shape->data[0] = max_index + 1;
for (int i = 1; i < data_rank; ++i) {
output_shape->data[i] = data->dims->data[i];
}
return context->ResizeTensor(context, output, output_shape);
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* data;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputDataTensor, &data));
const TfLiteTensor* segment_ids;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputSegmentIdsTensor,
&segment_ids));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TF_LITE_ENSURE(context,
data->type == kTfLiteInt32 || data->type == kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, segment_ids->type, kTfLiteInt32);
if (!IsConstantTensor(data) || !IsConstantTensor(segment_ids)) {
SetTensorToDynamic(output);
return kTfLiteOk;
}
return ResizeOutputTensor(context, data, segment_ids, output);
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* data;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputDataTensor, &data));
const TfLiteTensor* segment_ids;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputSegmentIdsTensor,
&segment_ids));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
if (IsDynamicTensor(output)) {
TF_LITE_ENSURE_OK(context,
ResizeOutputTensor(context, data, segment_ids, output));
}
#define TF_LITE_SEGMENT_SUM(dtype) \
reference_ops::SegmentSum<dtype>( \
GetTensorShape(data), GetTensorData<dtype>(data), \
GetTensorShape(segment_ids), GetTensorData<int32_t>(segment_ids), \
GetTensorShape(output), GetTensorData<dtype>(output));
switch (data->type) {
case kTfLiteInt32:
TF_LITE_SEGMENT_SUM(int32_t);
break;
case kTfLiteFloat32:
TF_LITE_SEGMENT_SUM(float);
break;
default:
context->ReportError(context,
"Currently SegmentSum doesn't support type: %s",
TfLiteTypeGetName(data->type));
return kTfLiteError;
}
#undef TF_LITE_SEGMENT_SUM
return kTfLiteOk;
}
} // namespace segment_sum
TfLiteRegistration* Register_SEGMENT_SUM() {
static TfLiteRegistration r = {nullptr, nullptr, segment_sum::Prepare,
segment_sum::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite