209 lines
8.8 KiB
C++
209 lines
8.8 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAre;
|
|
using ::testing::ElementsAreArray;
|
|
|
|
template <typename T>
|
|
class ReverseSequenceOpModel : public SingleOpModel {
|
|
public:
|
|
ReverseSequenceOpModel(const TensorData& input, const TensorData& seq_lengths,
|
|
int seq_dim, int batch_dim) {
|
|
input_ = AddInput(input);
|
|
seq_lengths_ = AddInput(seq_lengths);
|
|
|
|
output_ = AddOutput({input.type, {}});
|
|
|
|
SetBuiltinOp(
|
|
BuiltinOperator_REVERSE_SEQUENCE, BuiltinOptions_ReverseSequenceOptions,
|
|
CreateReverseSequenceOptions(builder_, seq_dim, batch_dim).Union());
|
|
BuildInterpreter({GetShape(input_)});
|
|
}
|
|
|
|
int input() { return input_; }
|
|
int seq_lengths() { return seq_lengths_; }
|
|
|
|
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
|
|
private:
|
|
int input_;
|
|
int seq_lengths_;
|
|
int output_;
|
|
};
|
|
|
|
// float32 tests
|
|
TEST(ReverseSequenceOpTest, FloatSeqDimIsGreater) {
|
|
ReverseSequenceOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}},
|
|
{TensorType_INT32, {4}}, 1, 0);
|
|
model.PopulateTensor<float>(model.input(),
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(
|
|
model.GetOutput(),
|
|
ElementsAreArray({5, 6, 3, 4, 1, 2, 9, 10, 7, 8, 11, 12,
|
|
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
|
|
}
|
|
|
|
TEST(ReverseSequenceOpTest, FloatBatchDimIsGreater) {
|
|
ReverseSequenceOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}},
|
|
{TensorType_INT32, {2}}, 0, 2);
|
|
model.PopulateTensor<float>(model.input(),
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({13, 20, 15, 22, 17, 24, 7, 14, 9, 16, 11, 18, 1,
|
|
8, 3, 10, 5, 12, 19, 2, 21, 4, 23, 6}));
|
|
}
|
|
|
|
// int32 tests
|
|
TEST(ReverseSequenceOpTest, Int32SeqDimIsGreater) {
|
|
ReverseSequenceOpModel<int32_t> model({TensorType_INT32, {4, 3, 2}},
|
|
{TensorType_INT32, {4}}, 1, 0);
|
|
model.PopulateTensor<int32_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(
|
|
model.GetOutput(),
|
|
ElementsAreArray({5, 6, 3, 4, 1, 2, 9, 10, 7, 8, 11, 12,
|
|
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
|
|
}
|
|
|
|
TEST(ReverseSequenceOpTest, Int32BatchDimIsGreater) {
|
|
ReverseSequenceOpModel<int32_t> model({TensorType_INT32, {4, 3, 2}},
|
|
{TensorType_INT32, {2}}, 0, 2);
|
|
model.PopulateTensor<int32_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({13, 20, 15, 22, 17, 24, 7, 14, 9, 16, 11, 18, 1,
|
|
8, 3, 10, 5, 12, 19, 2, 21, 4, 23, 6}));
|
|
}
|
|
|
|
// int64 tests
|
|
TEST(ReverseSequenceOpTest, Int64SeqDimIsGreater) {
|
|
ReverseSequenceOpModel<int64_t> model({TensorType_INT64, {4, 3, 2}},
|
|
{TensorType_INT32, {4}}, 1, 0);
|
|
model.PopulateTensor<int64_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(
|
|
model.GetOutput(),
|
|
ElementsAreArray({5, 6, 3, 4, 1, 2, 9, 10, 7, 8, 11, 12,
|
|
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
|
|
}
|
|
|
|
TEST(ReverseSequenceOpTest, Int64BatchDimIsGreater) {
|
|
ReverseSequenceOpModel<int64_t> model({TensorType_INT64, {4, 3, 2}},
|
|
{TensorType_INT32, {2}}, 0, 2);
|
|
model.PopulateTensor<int64_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({13, 20, 15, 22, 17, 24, 7, 14, 9, 16, 11, 18, 1,
|
|
8, 3, 10, 5, 12, 19, 2, 21, 4, 23, 6}));
|
|
}
|
|
|
|
// uint8 tests
|
|
TEST(ReverseSequenceOpTest, Uint8SeqDimIsGreater) {
|
|
ReverseSequenceOpModel<uint8_t> model({TensorType_UINT8, {4, 3, 2}},
|
|
{TensorType_INT32, {4}}, 1, 0);
|
|
model.PopulateTensor<uint8_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(
|
|
model.GetOutput(),
|
|
ElementsAreArray({5, 6, 3, 4, 1, 2, 9, 10, 7, 8, 11, 12,
|
|
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
|
|
}
|
|
|
|
TEST(ReverseSequenceOpTest, Uint8BatchDimIsGreater) {
|
|
ReverseSequenceOpModel<uint8_t> model({TensorType_UINT8, {4, 3, 2}},
|
|
{TensorType_INT32, {2}}, 0, 2);
|
|
model.PopulateTensor<uint8_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({13, 20, 15, 22, 17, 24, 7, 14, 9, 16, 11, 18, 1,
|
|
8, 3, 10, 5, 12, 19, 2, 21, 4, 23, 6}));
|
|
}
|
|
|
|
// int16 tests
|
|
TEST(ReverseSequenceOpTest, Int16SeqDimIsGreater) {
|
|
ReverseSequenceOpModel<int16_t> model({TensorType_INT16, {4, 3, 2}},
|
|
{TensorType_INT32, {4}}, 1, 0);
|
|
model.PopulateTensor<int16_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(
|
|
model.GetOutput(),
|
|
ElementsAreArray({5, 6, 3, 4, 1, 2, 9, 10, 7, 8, 11, 12,
|
|
17, 18, 15, 16, 13, 14, 23, 24, 21, 22, 19, 20}));
|
|
}
|
|
|
|
TEST(ReverseSequenceOpTest, Int16BatchDimIsGreater) {
|
|
ReverseSequenceOpModel<int16_t> model({TensorType_INT16, {4, 3, 2}},
|
|
{TensorType_INT32, {2}}, 0, 2);
|
|
model.PopulateTensor<int16_t>(
|
|
model.input(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24});
|
|
model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({13, 20, 15, 22, 17, 24, 7, 14, 9, 16, 11, 18, 1,
|
|
8, 3, 10, 5, 12, 19, 2, 21, 4, 23, 6}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|