STT-tensorflow/tensorflow/lite/kernels/reverse.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

149 lines
5.1 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace reverse {
namespace {
constexpr int kInputTensor = 0;
constexpr int kAxisTensor = 1;
constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* axis;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kAxisTensor, &axis));
TF_LITE_ENSURE_EQ(context, NumDimensions(axis), 1);
TF_LITE_ENSURE(context, NumDimensions(input) >= NumElements(axis));
if (input->type != kTfLiteInt32 && input->type != kTfLiteFloat32 &&
input->type != kTfLiteUInt8 && input->type != kTfLiteInt16 &&
input->type != kTfLiteInt64 && input->type != kTfLiteBool) {
context->ReportError(context, "Type '%s' is not supported by reverse.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
if (axis->type != kTfLiteInt32) {
context->ReportError(context, "Axis Type '%s' is not supported by reverse.",
TfLiteTypeGetName(axis->type));
return kTfLiteError;
}
// TODO(renjieliu): support multi-axis case.
if (NumElements(axis) > 1) {
context->ReportError(context, "Current does not support more than 1 axis.");
}
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input->dims);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
return context->ResizeTensor(context, output, output_shape);
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* axis_tensor;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kAxisTensor, &axis_tensor));
int axis = GetTensorData<int32_t>(axis_tensor)[0];
const int rank = NumDimensions(input);
if (axis < 0) {
axis += rank;
}
TF_LITE_ENSURE(context, axis >= 0 && axis < rank);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
switch (output->type) {
case kTfLiteFloat32: {
reference_ops::Reverse<float>(
axis, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
break;
}
case kTfLiteUInt8: {
reference_ops::Reverse<uint8_t>(
axis, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
break;
}
case kTfLiteInt16: {
reference_ops::Reverse<int16_t>(
axis, GetTensorShape(input), GetTensorData<int16_t>(input),
GetTensorShape(output), GetTensorData<int16_t>(output));
break;
}
case kTfLiteInt32: {
reference_ops::Reverse<int32_t>(
axis, GetTensorShape(input), GetTensorData<int32_t>(input),
GetTensorShape(output), GetTensorData<int32_t>(output));
break;
}
case kTfLiteInt64: {
reference_ops::Reverse<int64_t>(
axis, GetTensorShape(input), GetTensorData<int64_t>(input),
GetTensorShape(output), GetTensorData<int64_t>(output));
break;
}
case kTfLiteBool: {
reference_ops::Reverse<bool>(
axis, GetTensorShape(input), GetTensorData<bool>(input),
GetTensorShape(output), GetTensorData<bool>(output));
break;
}
default: {
context->ReportError(context, "Type '%s' is not supported by reverse.",
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
}
return kTfLiteOk;
}
} // namespace
} // namespace reverse
TfLiteRegistration* Register_REVERSE_V2() {
static TfLiteRegistration r = {nullptr, nullptr, reverse::Prepare,
reverse::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite