258 lines
9.0 KiB
C++
258 lines
9.0 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <initializer_list>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAre;
|
|
using ::testing::ElementsAreArray;
|
|
|
|
template <typename T>
|
|
class PackOpModel : public SingleOpModel {
|
|
public:
|
|
PackOpModel(const TensorData& input_template, int axis, int values_count) {
|
|
std::vector<std::vector<int>> all_input_shapes;
|
|
for (int i = 0; i < values_count; ++i) {
|
|
all_input_shapes.push_back(input_template.shape);
|
|
AddInput(input_template);
|
|
}
|
|
output_ = AddOutput({input_template.type, /*shape=*/{}, input_template.min,
|
|
input_template.max});
|
|
SetBuiltinOp(BuiltinOperator_PACK, BuiltinOptions_PackOptions,
|
|
CreatePackOptions(builder_, values_count, axis).Union());
|
|
BuildInterpreter(all_input_shapes);
|
|
}
|
|
|
|
void SetInput(int index, std::initializer_list<T> data) {
|
|
PopulateTensor(index, data);
|
|
}
|
|
|
|
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
|
|
private:
|
|
int output_;
|
|
};
|
|
|
|
// float32 tests.
|
|
TEST(PackOpTest, FloatThreeInputs) {
|
|
PackOpModel<float> model({TensorType_FLOAT32, {2}}, 0, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 4, 2, 5, 3, 6}));
|
|
}
|
|
|
|
TEST(PackOpTest, FloatThreeInputsDifferentAxis) {
|
|
PackOpModel<float> model({TensorType_FLOAT32, {2}}, 1, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TEST(PackOpTest, FloatThreeInputsNegativeAxis) {
|
|
PackOpModel<float> model({TensorType_FLOAT32, {2}}, -1, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TEST(PackOpTest, FloatMultilDimensions) {
|
|
PackOpModel<float> model({TensorType_FLOAT32, {2, 3}}, 1, 2);
|
|
model.SetInput(0, {1, 2, 3, 4, 5, 6});
|
|
model.SetInput(1, {7, 8, 9, 10, 11, 12});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2, 3));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12}));
|
|
}
|
|
|
|
TEST(PackOpTest, FloatFiveDimensions) {
|
|
PackOpModel<float> model({TensorType_FLOAT32, {2, 2, 2, 2}}, 1, 2);
|
|
model.SetInput(0, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
|
model.SetInput(
|
|
1, {17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2, 2, 2, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19,
|
|
20, 21, 22, 23, 24, 9, 10, 11, 12, 13, 14,
|
|
15, 16, 25, 26, 27, 28, 29, 30, 31, 32}));
|
|
}
|
|
|
|
// int32 tests.
|
|
TEST(PackOpTest, Int32ThreeInputs) {
|
|
PackOpModel<int32_t> model({TensorType_INT32, {2}}, 0, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 4, 2, 5, 3, 6}));
|
|
}
|
|
|
|
TEST(PackOpTest, Int32ThreeInputsDifferentAxis) {
|
|
PackOpModel<int32_t> model({TensorType_INT32, {2}}, 1, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TEST(PackOpTest, Int32ThreeInputsNegativeAxis) {
|
|
PackOpModel<int32_t> model({TensorType_INT32, {2}}, -1, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TEST(PackOpTest, Int32MultilDimensions) {
|
|
PackOpModel<int32_t> model({TensorType_INT32, {2, 3}}, 1, 2);
|
|
model.SetInput(0, {1, 2, 3, 4, 5, 6});
|
|
model.SetInput(1, {7, 8, 9, 10, 11, 12});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2, 3));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12}));
|
|
}
|
|
|
|
// int64 tests.
|
|
TEST(PackOpTest, Int64ThreeInputs) {
|
|
PackOpModel<int64_t> model({TensorType_INT64, {2}}, 0, 3);
|
|
model.SetInput(0, {1LL << 33, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, -(1LL << 34)});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1LL << 33, 4LL, 2LL, 5LL, 3LL, -(1LL << 34)}));
|
|
}
|
|
|
|
TEST(PackOpTest, Int64ThreeInputsDifferentAxis) {
|
|
PackOpModel<int64_t> model({TensorType_INT64, {2}}, 1, 3);
|
|
model.SetInput(0, {1LL << 33, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, -(1LL << 34)});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1LL << 33, 2LL, 3LL, 4LL, 5LL, -(1LL << 34)}));
|
|
}
|
|
|
|
TEST(PackOpTest, Int64ThreeInputsNegativeAxis) {
|
|
PackOpModel<int64_t> model({TensorType_INT64, {2}}, -1, 3);
|
|
model.SetInput(0, {1LL << 33, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, -(1LL << 34)});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1LL << 33, 2LL, 3LL, 4LL, 5LL, -(1LL << 34)}));
|
|
}
|
|
|
|
TEST(PackOpTest, Int64MultilDimensions) {
|
|
PackOpModel<int64_t> model({TensorType_INT64, {2, 3}}, 1, 2);
|
|
model.SetInput(0, {1LL << 33, 2, 3, 4, 5, 6});
|
|
model.SetInput(1, {7, 8, -(1LL << 34), 10, 11, 12});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2, 3));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1LL << 33, 2LL, 3LL, 7LL, 8LL, -(1LL << 34),
|
|
4LL, 5LL, 6LL, 10LL, 11LL, 12LL}));
|
|
}
|
|
|
|
template <typename InputType>
|
|
struct PackOpTestInt : public ::testing::Test {
|
|
using TypeToTest = InputType;
|
|
TensorType TENSOR_TYPE =
|
|
(std::is_same<InputType, int16_t>::value
|
|
? TensorType_INT16
|
|
: (std::is_same<InputType, uint8_t>::value ? TensorType_UINT8
|
|
: TensorType_INT8));
|
|
};
|
|
|
|
using TestTypes = testing::Types<int8_t, uint8_t, int16_t>;
|
|
TYPED_TEST_CASE(PackOpTestInt, TestTypes);
|
|
|
|
TYPED_TEST(PackOpTestInt, ThreeInputs) {
|
|
PackOpModel<typename TestFixture::TypeToTest> model(
|
|
{TestFixture::TENSOR_TYPE, {2}}, 0, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 4, 2, 5, 3, 6}));
|
|
}
|
|
|
|
TYPED_TEST(PackOpTestInt, ThreeInputsDifferentAxis) {
|
|
PackOpModel<typename TestFixture::TypeToTest> model(
|
|
{TestFixture::TENSOR_TYPE, {2}}, 1, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TYPED_TEST(PackOpTestInt, ThreeInputsNegativeAxis) {
|
|
PackOpModel<typename TestFixture::TypeToTest> model(
|
|
{TestFixture::TENSOR_TYPE, {2}}, -1, 3);
|
|
model.SetInput(0, {1, 4});
|
|
model.SetInput(1, {2, 5});
|
|
model.SetInput(2, {3, 6});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TYPED_TEST(PackOpTestInt, MultilDimensions) {
|
|
PackOpModel<typename TestFixture::TypeToTest> model(
|
|
{TestFixture::TENSOR_TYPE, {2, 3}}, 1, 2);
|
|
model.SetInput(0, {1, 2, 3, 4, 5, 6});
|
|
model.SetInput(1, {7, 8, 9, 10, 11, 12});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2, 3));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|