80 lines
2.4 KiB
C++
80 lines
2.4 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <initializer_list>
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class NegOpModel : public SingleOpModel {
|
|
public:
|
|
NegOpModel(const TensorData& input, const TensorData& output) {
|
|
input_ = AddInput(input);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_NEG, BuiltinOptions_NegOptions,
|
|
CreateNegOptions(builder_).Union());
|
|
BuildInterpreter({GetShape(input_)});
|
|
}
|
|
|
|
template <class T>
|
|
void SetInput(std::initializer_list<T> data) {
|
|
PopulateTensor<T>(input_, data);
|
|
}
|
|
|
|
template <class T>
|
|
std::vector<T> GetOutput() {
|
|
return ExtractVector<T>(output_);
|
|
}
|
|
|
|
protected:
|
|
int input_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(NegOpModel, NegFloat) {
|
|
NegOpModel m({TensorType_FLOAT32, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
|
|
m.SetInput<float>({-2.0f, -1.0f, 0.f, 1.0f, 2.0f, 3.0f});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<float>(),
|
|
ElementsAreArray({2.0f, 1.0f, 0.f, -1.0f, -2.0f, -3.0f}));
|
|
}
|
|
|
|
TEST(NegOpModel, NegInt32) {
|
|
NegOpModel m({TensorType_INT32, {2, 3}}, {TensorType_INT32, {2, 3}});
|
|
m.SetInput<int32_t>({-2, -1, 0, 1, 2, 3});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int32_t>(), ElementsAreArray({2, 1, 0, -1, -2, -3}));
|
|
}
|
|
|
|
TEST(NegOpModel, NegInt64) {
|
|
NegOpModel m({TensorType_INT64, {2, 3}}, {TensorType_INT64, {2, 3}});
|
|
m.SetInput<int64_t>({-2, -1, 0, 1, 2, 3});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int64_t>(), ElementsAreArray({2, 1, 0, -1, -2, -3}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|