STT-tensorflow/tensorflow/lite/kernels/mul_test.cc
2020-09-14 17:30:42 +01:00

493 lines
21 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class BaseMulOpModel : public SingleOpModel {
public:
BaseMulOpModel(const TensorData& input1, const TensorData& input2,
const TensorData& output,
ActivationFunctionType activation_type) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
output_ = AddOutput(output);
SetBuiltinOp(BuiltinOperator_MUL, BuiltinOptions_MulOptions,
CreateMulOptions(builder_, activation_type).Union());
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
protected:
int input1_;
int input2_;
int output_;
};
class FloatMulOpModel : public BaseMulOpModel {
public:
using BaseMulOpModel::BaseMulOpModel;
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
};
class IntegerMulOpModel : public BaseMulOpModel {
public:
using BaseMulOpModel::BaseMulOpModel;
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
};
// For quantized Mul, the error shouldn't exceed (2*step + step^2).
// The param min=-1.0 & max=1.0 is used in the following tests.
// The tolerance value is ~0.0157.
const float kQuantizedStep = 2.0 / 255.0;
const float kQuantizedTolerance =
2.0 * kQuantizedStep + kQuantizedStep * kQuantizedStep;
const float kQuantizedStepInt16 = 2.0 / 32767.0;
const float kQuantizedToleranceInt16 =
2.0 * kQuantizedStepInt16 + kQuantizedStepInt16 * kQuantizedStepInt16;
class QuantizedMulOpModel : public BaseMulOpModel {
public:
using BaseMulOpModel::BaseMulOpModel;
template <typename integer_dtype>
std::vector<float> GetDequantizedOutput() {
return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_),
GetScale(output_), GetZeroPoint(output_));
}
std::vector<float> GetDequantizedOutputInt16() {
return Dequantize<int16_t>(ExtractVector<int16_t>(output_),
GetScale(output_), GetZeroPoint(output_));
}
};
TEST(FloatMulOpTest, NoActivation) {
FloatMulOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 0.4})));
}
TEST(FloatMulOpTest, ActivationRELU_N1_TO_1) {
FloatMulOpModel m(
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, ActivationFunctionType_RELU_N1_TO_1);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 1.0})));
}
TEST(FloatMulOpTest, VariousInputShapes) {
const std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5, 1.1, 0.1});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 0.4, 1.21, 0.2})))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, WithScalarBroadcast) {
const std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.1});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.02, 0.07, 0.08, 0.11, 0.2})))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, WithBroadcast) {
const std::vector<std::vector<int>> test_shapes = {
{2, 4}, {2, 1, 4}, {1, 2, 4}, {1, 2, 1, 4}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {4}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(),
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0, 1.1, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.4});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear(
{-0.2, 0.04, 0.21, 0.32, 0.11, 0.4, 0.33, 0.32})))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, MixedBroadcast) {
const std::vector<int> base_shape = {2, 3, 1, 2};
const std::vector<std::vector<int>> test_shapes = {
{1, 1, 3, 2}, {1, 3, 1, 2}, {2, 1, 3, 1}, {2, 3, 1, 1}};
const std::vector<std::vector<float>> test_outputs = {
{-0.06f, 0.69f, 0.12f, 1.15f, -0.30f, 2.07f, 0.18f, 0.15f, -0.36f,
0.25f, 0.90f, 0.45f, 0.16f, -0.33f, -0.32f, -0.55f, 0.80f, -0.99f,
0.24f, 0.84f, -0.48f, 1.40f, 1.20f, 2.52f, -0.32f, 0.00f, 0.64f,
0.00f, -1.60f, 0.00f, 0.14f, -0.66f, -0.28f, -1.10f, 0.70f, -1.98f},
{-0.06f, 0.69f, -0.36f, 0.25f, 0.80f, -0.99f, 0.24f, 0.84f, 0.64f, 0.00f,
0.70f, -1.98f},
{-0.06f, 0.46f, -0.09f, 0.69f, 0.12f, -0.92f, 0.18f, 0.10f, 0.27f,
0.15f, -0.36f, -0.20f, 0.16f, -0.22f, 0.24f, -0.33f, -0.32f, 0.44f,
0.60f, 1.40f, 1.20f, 2.80f, 1.08f, 2.52f, -0.80f, 0.00f, -1.60f,
0.00f, -1.44f, 0.00f, 0.35f, -1.10f, 0.70f, -2.20f, 0.63f, -1.98f},
{-0.06f, 0.46f, 0.27f, 0.15f, -0.32f, 0.44f, 0.60f, 1.40f, -1.60f, 0.00f,
0.63f, -1.98f}};
for (size_t i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel model_fixture(
{TensorType_FLOAT32, base_shape}, {TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
model_fixture.PopulateTensor<float>(
model_fixture.input1(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.PopulateTensor<float>(model_fixture.input2(),
{0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.Invoke();
EXPECT_THAT(model_fixture.GetOutput(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], 0.0001f)))
<< "With shape number " << i;
}
// Re-run with exchanged inputs.
for (size_t i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel model_fixture(
{TensorType_FLOAT32, test_shapes[i]}, {TensorType_FLOAT32, base_shape},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
model_fixture.PopulateTensor<float>(model_fixture.input1(),
{0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.PopulateTensor<float>(
model_fixture.input2(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.Invoke();
EXPECT_THAT(model_fixture.GetOutput(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], 0.0001f)))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, WithBroadcast2Elements) {
const std::vector<std::vector<int>> test_shapes = {
{2, 2}, {2, 1, 2}, {1, 2, 2}, {1, 2, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {2}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.07, 0.16})))
<< "With shape number " << i;
}
}
TEST(IntegerMulOpTest, NoActivation) {
IntegerMulOpModel m({TensorType_INT32, {1, 2, 2, 1}},
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-20, 4, 21, 40}));
}
TEST(IntegerMulOpTest, ActivationRELU_N1_TO_1) {
IntegerMulOpModel m({TensorType_INT32, {1, 2, 2, 1}},
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
ActivationFunctionType_RELU_N1_TO_1);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, 1, 1}));
}
TEST(IntegerMulOpTest, VariousInputShapes) {
const std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
IntegerMulOpModel m({TensorType_INT32, test_shapes[i]},
{TensorType_INT32, test_shapes[i]},
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5, 11, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-20, 4, 21, 40, 121, 20}))
<< "With shape number " << i;
}
}
TEST(IntegerMulOpTest, WithBroadcast) {
const std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
IntegerMulOpModel m({TensorType_INT32, test_shapes[i]},
{TensorType_INT32, {}}, // always a scalar
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
m.PopulateTensor<int32_t>(m.input2(), {1});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-20, 2, 7, 8, 11, 20})))
<< "With shape number " << i;
}
}
template <TensorType tensor_type, typename integer_dtype>
void NoActivation() {
QuantizedMulOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {}, -1.0, 1.0},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {-0.8, 0.2, 0.9, 0.7});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.6, 0.4, 0.9, 0.8});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({-0.48, 0.08, 0.81, 0.56},
kQuantizedTolerance)));
}
template <TensorType tensor_type, typename integer_dtype>
void NoActivationLargeMultiplier() {
// Intentionally pathological output range much narrower than needed
// to represent input values to exercise the multiplier>1 case.
QuantizedMulOpModel m({tensor_type, {1, 2, 2, 1}, -100, 100},
{tensor_type, {1, 2, 2, 1}, -100, 100},
{tensor_type, {}, -10, 10},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {-4, 2, 3, 1});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {-1, -3, 4, 2});
m.Invoke();
// Note the large tolerance. This computation is inherently inaccurate.
const float kTolerance = 1.4f;
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({4, -6, 10, 2}, kTolerance)));
}
TEST(QuantizedMulOpTest, NoActivationUInt8) {
NoActivation<TensorType_UINT8, uint8_t>();
NoActivationLargeMultiplier<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, NoActivationInt8) {
NoActivation<TensorType_INT8, int8_t>();
NoActivationLargeMultiplier<TensorType_INT8, int8_t>();
}
TEST(QuantizedMulOpTest, NoActivationInt16) {
const float kMin = -1.f;
const float kMax = 32767.f / 32768.f;
QuantizedMulOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), {-0.8, 0.2, 0.9, 0.7});
m.QuantizeAndPopulate<int16_t>(m.input2(), {0.6, 0.4, 0.9, 0.8});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear({-0.48, 0.08, 0.81, 0.56},
kQuantizedToleranceInt16)));
}
TEST(QuantizedMulOpTest, NoActivationInt16Scaled) {
const float kMin = -2.f;
const float kMax = 2.f * 32767.f / 32768.f;
QuantizedMulOpModel m({TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 3, 1}, 2 * kMin, 2 * kMax},
{TensorType_INT16, {}, 8 * kMin, 8 * kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), {-1.8, 0.2, 0.9, 1.7, 0.1, -1.95});
m.QuantizeAndPopulate<int16_t>(m.input2(),
{3.6, -3.4, 3.9, 0.8, -1.0, -3.95});
m.Invoke();
const float kQuantizedToleranceInt16Scaled =
6.0 * kQuantizedStepInt16 + kQuantizedStepInt16 * kQuantizedStepInt16;
EXPECT_THAT(
m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear({-6.48, -0.68, 3.51, 1.36, -0.1, 7.7025},
kQuantizedToleranceInt16Scaled)));
}
template <TensorType tensor_type, typename integer_dtype>
void NoActivationInt16With8BitOutput() {
const float kMinInt16 = -1.f;
const float kMaxInt16 = 32767.f / 32768.f;
const float kMinUint8 = -1.f;
const float kMaxUint8 = 127.f / 128.f;
QuantizedMulOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMinInt16, kMaxInt16},
{TensorType_INT16, {1, 2, 2, 1}, kMinInt16, kMaxInt16},
{tensor_type, {}, kMinUint8, kMaxUint8},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), {-0.8, 0.2, 0.9, 0.7});
m.QuantizeAndPopulate<int16_t>(m.input2(), {0.6, 0.4, 0.9, 0.8});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({-0.48, 0.08, 0.81, 0.56},
kQuantizedTolerance)));
}
TEST(QuantizedMulOpTest, NoActivationInt16WithUint8Output) {
NoActivationInt16With8BitOutput<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, NoActivationInt16Withint8Output) {
NoActivationInt16With8BitOutput<TensorType_INT8, int8_t>();
}
// for quantized Mul, the error shouldn't exceed 2*step
float GetTolerance(int min, int max) {
float kQuantizedStep = (max - min) / 255.0;
float kQuantizedTolerance = 2.0 * kQuantizedStep;
return kQuantizedTolerance;
}
template <TensorType tensor_type, typename integer_dtype>
void WithBroadcast() {
const float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
const std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
// Test with a smaller than 1 and greater than 1 quantization multiplier
const std::vector<std::pair<float, float>> test_input_range = {{-3.0, 3.0},
{-6.0, 6.0}};
for (int i = 0; i < test_shapes.size(); ++i) {
for (int j = 0; j < test_input_range.size(); ++j) {
const std::pair<float, float>& input_range = test_input_range[j];
QuantizedMulOpModel m(
{tensor_type, test_shapes[i], input_range.first, input_range.second},
{tensor_type, {}, input_range.first, input_range.second},
{tensor_type, {}, -0.2, 0.2}, ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.1});
m.Invoke();
EXPECT_THAT(
m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.02, 0.07, 0.08, 0.11, 0.2},
kQuantizedTolerance)))
<< "With shape number " << i << " and range number " << j;
}
}
}
template <enum TensorType tensor_type, typename integer_dtype>
void QuantizedWithMixedBroadcast() {
const float kQuantizedTolerance = GetTolerance(-3.f, 3.f);
const std::vector<int> base_shape = {2, 3, 1, 2};
const std::vector<std::vector<int>> test_shapes = {
{1, 1, 3, 2}, {1, 3, 1, 2}, {2, 1, 3, 1}, {2, 3, 1, 1}};
const std::vector<std::vector<float>> test_outputs = {
{-0.06f, 0.69f, 0.12f, 1.15f, -0.30f, 2.07f, 0.18f, 0.15f, -0.36f,
0.25f, 0.90f, 0.45f, 0.16f, -0.33f, -0.32f, -0.55f, 0.80f, -0.99f,
0.24f, 0.84f, -0.48f, 1.40f, 1.20f, 2.52f, -0.32f, 0.00f, 0.64f,
0.00f, -1.60f, 0.00f, 0.14f, -0.66f, -0.28f, -1.10f, 0.70f, -1.98f},
{-0.06f, 0.69f, -0.36f, 0.25f, 0.80f, -0.99f, 0.24f, 0.84f, 0.64f, 0.00f,
0.70f, -1.98f},
{-0.06f, 0.46f, -0.09f, 0.69f, 0.12f, -0.92f, 0.18f, 0.10f, 0.27f,
0.15f, -0.36f, -0.20f, 0.16f, -0.22f, 0.24f, -0.33f, -0.32f, 0.44f,
0.60f, 1.40f, 1.20f, 2.80f, 1.08f, 2.52f, -0.80f, 0.00f, -1.60f,
0.00f, -1.44f, 0.00f, 0.35f, -1.10f, 0.70f, -2.20f, 0.63f, -1.98f},
{-0.06f, 0.46f, 0.27f, 0.15f, -0.32f, 0.44f, 0.60f, 1.40f, -1.60f, 0.00f,
0.63f, -1.98f}};
for (size_t i = 0; i < test_shapes.size(); ++i) {
QuantizedMulOpModel model_fixture({tensor_type, base_shape, -3.f, 3.f},
{tensor_type, test_shapes[i], -3.f, 3.f},
{tensor_type, {}, -3.f, 3.f},
ActivationFunctionType_NONE);
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input1(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input2(), {0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.Invoke();
EXPECT_THAT(
model_fixture.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], kQuantizedTolerance)))
<< "With shape number " << i;
}
// Re-run with exchanged inputs.
for (size_t i = 0; i < test_shapes.size(); ++i) {
QuantizedMulOpModel model_fixture({tensor_type, test_shapes[i], -3.f, 3.f},
{tensor_type, base_shape, -3.f, 3.f},
{tensor_type, {}, -3.f, 3.f},
ActivationFunctionType_NONE);
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input1(), {0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input2(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.Invoke();
EXPECT_THAT(
model_fixture.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], kQuantizedTolerance)))
<< "With shape number " << i;
}
}
TEST(QuantizedMulOpTest, WithBroadcastUInt8) {
WithBroadcast<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, WithBroadcastInt8) {
WithBroadcast<TensorType_INT8, int8_t>();
}
TEST(QuantizedMulOpTest, QuantizedWithMixedBroadcastUInt8) {
QuantizedWithMixedBroadcast<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, QuantizedWithMixedBroadcastInt8) {
QuantizedWithMixedBroadcast<TensorType_INT8, int8_t>();
}
} // namespace
} // namespace tflite