STT-tensorflow/tensorflow/lite/kernels/lsh_projection_test.cc

137 lines
4.2 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <initializer_list>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAre;
class LSHProjectionOpModel : public SingleOpModel {
public:
LSHProjectionOpModel(LSHProjectionType type,
std::initializer_list<int> hash_shape,
std::initializer_list<int> input_shape,
std::initializer_list<int> weight_shape) {
hash_ = AddInput(TensorType_FLOAT32);
input_ = AddInput(TensorType_INT32);
if (weight_shape.size() > 0) {
weight_ = AddInput(TensorType_FLOAT32);
}
output_ = AddOutput(TensorType_INT32);
SetBuiltinOp(BuiltinOperator_LSH_PROJECTION,
BuiltinOptions_LSHProjectionOptions,
CreateLSHProjectionOptions(builder_, type).Union());
if (weight_shape.size() > 0) {
BuildInterpreter({hash_shape, input_shape, weight_shape});
} else {
BuildInterpreter({hash_shape, input_shape});
}
output_size_ = 1;
for (int i : hash_shape) {
output_size_ *= i;
if (type == LSHProjectionType_SPARSE) {
break;
}
}
}
void SetInput(std::initializer_list<int> data) {
PopulateTensor(input_, data);
}
void SetHash(std::initializer_list<float> data) {
PopulateTensor(hash_, data);
}
void SetWeight(std::initializer_list<float> f) { PopulateTensor(weight_, f); }
std::vector<int> GetOutput() { return ExtractVector<int>(output_); }
private:
int input_;
int hash_;
int weight_;
int output_;
int output_size_;
};
TEST(LSHProjectionOpTest2, Dense1DInputs) {
LSHProjectionOpModel m(LSHProjectionType_DENSE, {3, 2}, {5}, {5});
m.SetInput({12345, 54321, 67890, 9876, -12345678});
m.SetHash({0.123, 0.456, -0.321, 1.234, 5.678, -4.321});
m.SetWeight({1.0, 1.0, 1.0, 1.0, 1.0});
m.Invoke();
#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
// Hash returns differently on machines with different endianness
EXPECT_THAT(m.GetOutput(), ElementsAre(0, 0, 1, 1, 1, 0));
#else
EXPECT_THAT(m.GetOutput(), ElementsAre(0, 0, 0, 1, 0, 0));
#endif
}
TEST(LSHProjectionOpTest2, Sparse1DInputs) {
LSHProjectionOpModel m(LSHProjectionType_SPARSE, {3, 2}, {5}, {});
m.SetInput({12345, 54321, 67890, 9876, -12345678});
m.SetHash({0.123, 0.456, -0.321, 1.234, 5.678, -4.321});
m.Invoke();
#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
// Hash returns differently on machines with different endianness
EXPECT_THAT(m.GetOutput(), ElementsAre(0 + 0, 4 + 3, 8 + 2));
#else
EXPECT_THAT(m.GetOutput(), ElementsAre(0 + 0, 4 + 1, 8 + 0));
#endif
}
TEST(LSHProjectionOpTest2, Sparse3DInputs) {
LSHProjectionOpModel m(LSHProjectionType_SPARSE, {3, 2}, {5, 2, 2}, {5});
m.SetInput({1234, 2345, 3456, 1234, 4567, 5678, 6789, 4567, 7891, 8912,
9123, 7890, -987, -876, -765, -987, -543, -432, -321, -543});
m.SetHash({0.123, 0.456, -0.321, 1.234, 5.678, -4.321});
m.SetWeight({0.12, 0.34, 0.56, 0.67, 0.78});
m.Invoke();
#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
// Hash returns differently on machines with different endianness
EXPECT_THAT(m.GetOutput(), ElementsAre(0 + 0, 4 + 3, 8 + 2));
#else
EXPECT_THAT(m.GetOutput(), ElementsAre(0 + 2, 4 + 1, 8 + 1));
#endif
}
} // namespace
} // namespace tflite