As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332521299 Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
152 lines
5.0 KiB
C++
152 lines
5.0 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stddef.h>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/binary_function.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace logical {
|
|
namespace {
|
|
|
|
// Input/output tensor index.
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
// Op data for logical op.
|
|
struct OpData {
|
|
bool requires_broadcast;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* data = new OpData;
|
|
data->requires_broadcast = false;
|
|
return data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
// Reinterprete the opaque data provided by user.
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetInputSafe(context, node, kInputTensor1, &input1));
|
|
const TfLiteTensor* input2;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetInputSafe(context, node, kInputTensor2, &input2));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
|
|
const TfLiteType type = input1->type;
|
|
if (type != kTfLiteBool) {
|
|
context->ReportError(context, "Logical ops only support bool type.");
|
|
return kTfLiteError;
|
|
}
|
|
output->type = type;
|
|
|
|
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (data->requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
|
context, input1, input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(input1->dims);
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node,
|
|
bool (*func)(bool, bool)) {
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetInputSafe(context, node, kInputTensor1, &input1));
|
|
const TfLiteTensor* input2;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetInputSafe(context, node, kInputTensor2, &input2));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
if (data->requires_broadcast) {
|
|
reference_ops::BroadcastBinaryFunction4DSlow<bool, bool, bool>(
|
|
GetTensorShape(input1), GetTensorData<bool>(input1),
|
|
GetTensorShape(input2), GetTensorData<bool>(input2),
|
|
GetTensorShape(output), GetTensorData<bool>(output), func);
|
|
} else {
|
|
reference_ops::BinaryFunction<bool, bool, bool>(
|
|
GetTensorShape(input1), GetTensorData<bool>(input1),
|
|
GetTensorShape(input2), GetTensorData<bool>(input2),
|
|
GetTensorShape(output), GetTensorData<bool>(output), func);
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
bool LogicalOr(bool x, bool y) { return x || y; }
|
|
|
|
TfLiteStatus LogicalOrEval(TfLiteContext* context, TfLiteNode* node) {
|
|
return LogicalImpl(context, node, LogicalOr);
|
|
}
|
|
|
|
bool LogicalAnd(bool x, bool y) { return x && y; }
|
|
|
|
TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) {
|
|
return LogicalImpl(context, node, LogicalAnd);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace logical
|
|
|
|
TfLiteRegistration* Register_LOGICAL_OR() {
|
|
// Init, Free, Prepare, Eval are satisfying the Interface required by
|
|
// TfLiteRegistration.
|
|
static TfLiteRegistration r = {logical::Init, logical::Free, logical::Prepare,
|
|
logical::LogicalOrEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_LOGICAL_AND() {
|
|
// Init, Free, Prepare, Eval are satisfying the Interface required by
|
|
// TfLiteRegistration.
|
|
static TfLiteRegistration r = {logical::Init, logical::Free, logical::Prepare,
|
|
logical::LogicalAndEval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|