298 lines
14 KiB
C++
298 lines
14 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_
|
|
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_
|
|
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/cppmath.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
|
|
namespace tflite {
|
|
namespace reference_ops {
|
|
|
|
inline void AveragePool(const PoolParams& params,
|
|
const RuntimeShape& input_shape,
|
|
const float* input_data,
|
|
const RuntimeShape& output_shape, float* output_data) {
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
const int stride_height = params.stride_height;
|
|
const int stride_width = params.stride_width;
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
for (int channel = 0; channel < depth; ++channel) {
|
|
const int in_x_origin =
|
|
(out_x * stride_width) - params.padding_values.width;
|
|
const int in_y_origin =
|
|
(out_y * stride_height) - params.padding_values.height;
|
|
// Compute the boundaries of the filter region clamped so as to
|
|
// ensure that the filter window fits in the input array.
|
|
const int filter_x_start = std::max(0, -in_x_origin);
|
|
const int filter_x_end =
|
|
std::min(params.filter_width, input_width - in_x_origin);
|
|
const int filter_y_start = std::max(0, -in_y_origin);
|
|
const int filter_y_end =
|
|
std::min(params.filter_height, input_height - in_y_origin);
|
|
float total = 0.f;
|
|
float filter_count = 0;
|
|
for (int filter_y = filter_y_start; filter_y < filter_y_end;
|
|
++filter_y) {
|
|
for (int filter_x = filter_x_start; filter_x < filter_x_end;
|
|
++filter_x) {
|
|
const int in_x = in_x_origin + filter_x;
|
|
const int in_y = in_y_origin + filter_y;
|
|
total +=
|
|
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
|
|
filter_count++;
|
|
}
|
|
}
|
|
const float average = total / filter_count;
|
|
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
ActivationFunctionWithMinMax(average, params.float_activation_min,
|
|
params.float_activation_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void AveragePool(const PoolParams& params,
|
|
const RuntimeShape& input_shape,
|
|
const uint8_t* input_data,
|
|
const RuntimeShape& output_shape,
|
|
uint8_t* output_data) {
|
|
TFLITE_DCHECK_LE(params.quantized_activation_min,
|
|
params.quantized_activation_max);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
const int stride_height = params.stride_height;
|
|
const int stride_width = params.stride_width;
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
for (int channel = 0; channel < depth; ++channel) {
|
|
const int in_x_origin =
|
|
(out_x * stride_width) - params.padding_values.width;
|
|
const int in_y_origin =
|
|
(out_y * stride_height) - params.padding_values.height;
|
|
// Compute the boundaries of the filter region clamped so as to
|
|
// ensure that the filter window fits in the input array.
|
|
const int filter_x_start = std::max(0, -in_x_origin);
|
|
const int filter_x_end =
|
|
std::min(params.filter_width, input_width - in_x_origin);
|
|
const int filter_y_start = std::max(0, -in_y_origin);
|
|
const int filter_y_end =
|
|
std::min(params.filter_height, input_height - in_y_origin);
|
|
int32_t acc = 0;
|
|
int filter_count = 0;
|
|
for (int filter_y = filter_y_start; filter_y < filter_y_end;
|
|
++filter_y) {
|
|
for (int filter_x = filter_x_start; filter_x < filter_x_end;
|
|
++filter_x) {
|
|
const int in_x = in_x_origin + filter_x;
|
|
const int in_y = in_y_origin + filter_y;
|
|
acc +=
|
|
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
|
|
filter_count++;
|
|
}
|
|
}
|
|
acc = (acc + filter_count / 2) / filter_count;
|
|
acc = std::max(acc, params.quantized_activation_min);
|
|
acc = std::min(acc, params.quantized_activation_max);
|
|
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
static_cast<uint8_t>(acc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void L2Pool(const PoolParams& params, const RuntimeShape& input_shape,
|
|
const float* input_data, const RuntimeShape& output_shape,
|
|
float* output_data) {
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
const int stride_height = params.stride_height;
|
|
const int stride_width = params.stride_width;
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
for (int channel = 0; channel < depth; ++channel) {
|
|
const int in_x_origin =
|
|
(out_x * stride_width) - params.padding_values.width;
|
|
const int in_y_origin =
|
|
(out_y * stride_height) - params.padding_values.height;
|
|
// Compute the boundaries of the filter region clamped so as to
|
|
// ensure that the filter window fits in the input array.
|
|
const int filter_x_start = std::max(0, -in_x_origin);
|
|
const int filter_x_end =
|
|
std::min(params.filter_width, input_width - in_x_origin);
|
|
const int filter_y_start = std::max(0, -in_y_origin);
|
|
const int filter_y_end =
|
|
std::min(params.filter_height, input_height - in_y_origin);
|
|
float sum_squares = 0.f;
|
|
int filter_count = 0;
|
|
for (int filter_y = filter_y_start; filter_y < filter_y_end;
|
|
++filter_y) {
|
|
for (int filter_x = filter_x_start; filter_x < filter_x_end;
|
|
++filter_x) {
|
|
const int in_x = in_x_origin + filter_x;
|
|
const int in_y = in_y_origin + filter_y;
|
|
const float val =
|
|
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
|
|
sum_squares += val * val;
|
|
filter_count++;
|
|
}
|
|
}
|
|
const float l2pool_result = std::sqrt(sum_squares / filter_count);
|
|
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
ActivationFunctionWithMinMax(l2pool_result,
|
|
params.float_activation_min,
|
|
params.float_activation_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
|
|
const float* input_data, const RuntimeShape& output_shape,
|
|
float* output_data) {
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
const int stride_height = params.stride_height;
|
|
const int stride_width = params.stride_width;
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
for (int channel = 0; channel < depth; ++channel) {
|
|
const int in_x_origin =
|
|
(out_x * stride_width) - params.padding_values.width;
|
|
const int in_y_origin =
|
|
(out_y * stride_height) - params.padding_values.height;
|
|
// Compute the boundaries of the filter region clamped so as to
|
|
// ensure that the filter window fits in the input array.
|
|
const int filter_x_start = std::max(0, -in_x_origin);
|
|
const int filter_x_end =
|
|
std::min(params.filter_width, input_width - in_x_origin);
|
|
const int filter_y_start = std::max(0, -in_y_origin);
|
|
const int filter_y_end =
|
|
std::min(params.filter_height, input_height - in_y_origin);
|
|
float max = std::numeric_limits<float>::lowest();
|
|
for (int filter_y = filter_y_start; filter_y < filter_y_end;
|
|
++filter_y) {
|
|
for (int filter_x = filter_x_start; filter_x < filter_x_end;
|
|
++filter_x) {
|
|
const int in_x = in_x_origin + filter_x;
|
|
const int in_y = in_y_origin + filter_y;
|
|
max = std::max(
|
|
max,
|
|
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
|
|
}
|
|
}
|
|
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
ActivationFunctionWithMinMax(max, params.float_activation_min,
|
|
params.float_activation_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
|
|
const uint8_t* input_data, const RuntimeShape& output_shape,
|
|
uint8_t* output_data) {
|
|
TFLITE_DCHECK_LE(params.quantized_activation_min,
|
|
params.quantized_activation_max);
|
|
TFLITE_DCHECK_GE(params.quantized_activation_min, 0);
|
|
TFLITE_DCHECK_LE(params.quantized_activation_max, 255);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
const int stride_height = params.stride_height;
|
|
const int stride_width = params.stride_width;
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
for (int channel = 0; channel < depth; ++channel) {
|
|
const int in_x_origin =
|
|
(out_x * stride_width) - params.padding_values.width;
|
|
const int in_y_origin =
|
|
(out_y * stride_height) - params.padding_values.height;
|
|
// Compute the boundaries of the filter region clamped so as to
|
|
// ensure that the filter window fits in the input array.
|
|
const int filter_x_start = std::max(0, -in_x_origin);
|
|
const int filter_x_end =
|
|
std::min(params.filter_width, input_width - in_x_origin);
|
|
const int filter_y_start = std::max(0, -in_y_origin);
|
|
const int filter_y_end =
|
|
std::min(params.filter_height, input_height - in_y_origin);
|
|
uint8_t max = 0;
|
|
for (int filter_y = filter_y_start; filter_y < filter_y_end;
|
|
++filter_y) {
|
|
for (int filter_x = filter_x_start; filter_x < filter_x_end;
|
|
++filter_x) {
|
|
const int in_x = in_x_origin + filter_x;
|
|
const int in_y = in_y_origin + filter_y;
|
|
max = std::max(
|
|
max,
|
|
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
|
|
}
|
|
}
|
|
max = std::max<uint8_t>(max, params.quantized_activation_min);
|
|
max = std::min<uint8_t>(max, params.quantized_activation_max);
|
|
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
static_cast<uint8_t>(max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace reference_ops
|
|
} // namespace tflite
|
|
|
|
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_
|