48 lines
1.9 KiB
C++
48 lines
1.9 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DENSIFY_H_
|
|
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DENSIFY_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/tools/optimize/sparsity/format_converter.h"
|
|
|
|
namespace tflite {
|
|
namespace reference_ops {
|
|
|
|
template <typename T>
|
|
inline void Densify(const TfLiteSparsity* sparsity,
|
|
const RuntimeShape& input_shape, const T* input_data,
|
|
const RuntimeShape& output_shape, T* output_data,
|
|
TfLiteContext* context) {
|
|
const int dims_count = output_shape.DimensionsCount();
|
|
std::vector<int> vector_shape(dims_count);
|
|
for (int i = 0; i < dims_count; i++) {
|
|
vector_shape[i] = output_shape.Dims(i);
|
|
}
|
|
|
|
tflite::optimize::sparsity::FormatConverter<T> converter(vector_shape,
|
|
*sparsity);
|
|
converter.SparseToDense(input_data, output_shape.FlatSize(), output_data,
|
|
context);
|
|
}
|
|
|
|
} // namespace reference_ops
|
|
} // namespace tflite
|
|
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DENSIFY_H_
|