STT-tensorflow/tensorflow/lite/kernels/floor_mod.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

174 lines
5.8 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/binary_function.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
// TODO(b/117523611): We should factor out a binary_op and put binary ops there.
namespace tflite {
namespace ops {
namespace builtin {
namespace floor_mod {
namespace {
// Input/output tensor index.
constexpr int kInputTensor1 = 0;
constexpr int kInputTensor2 = 1;
constexpr int kOutputTensor = 0;
// Op data for floor_mod op.
struct OpData {
bool requires_broadcast;
};
// TODO(b/117912880): Support quantization.
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
auto* data = new OpData;
data->requires_broadcast = false;
return data;
}
void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<OpData*>(buffer);
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
// Reinterprete the opaque data provided by user.
OpData* data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input1;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor1, &input1));
const TfLiteTensor* input2;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor2, &input2));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
const TfLiteType type = input1->type;
if (type != kTfLiteInt32 && type != kTfLiteFloat32 && type != kTfLiteInt64) {
context->ReportError(context, "Type '%s' is not supported by floor_mod.",
TfLiteTypeGetName(type));
return kTfLiteError;
}
output->type = type;
data->requires_broadcast = !HaveSameShapes(input1, input2);
TfLiteIntArray* output_size = nullptr;
if (data->requires_broadcast) {
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
context, input1, input2, &output_size));
} else {
output_size = TfLiteIntArrayCopy(input1->dims);
}
return context->ResizeTensor(context, output, output_size);
}
template <typename T>
TfLiteStatus EvalImpl(TfLiteContext* context, bool requires_broadcast,
const TfLiteTensor* input1, const TfLiteTensor* input2,
TfLiteTensor* output) {
const T* denominator_data = GetTensorData<T>(input2);
if (input2->type == kTfLiteInt32 || input2->type == kTfLiteInt64) {
// Validate the denominator only for integer.
const int num_elements = NumElements(input2);
for (int i = 0; i < num_elements; ++i) {
if (denominator_data[i] == 0) {
context->ReportError(context, "Division by 0");
return kTfLiteError;
}
}
}
if (requires_broadcast) {
reference_ops::BroadcastBinaryFunction4DSlow<T, T, T>(
GetTensorShape(input1), GetTensorData<T>(input1),
GetTensorShape(input2), denominator_data, GetTensorShape(output),
GetTensorData<T>(output), reference_ops::FloorMod<T>);
} else {
reference_ops::BinaryFunction<T, T, T>(
GetTensorShape(input1), GetTensorData<T>(input1),
GetTensorShape(input2), GetTensorData<T>(input2),
GetTensorShape(output), GetTensorData<T>(output),
reference_ops::FloorMod<T>);
}
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input1;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor1, &input1));
const TfLiteTensor* input2;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor2, &input2));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
switch (input1->type) {
case kTfLiteInt32: {
return EvalImpl<int32_t>(context, data->requires_broadcast, input1,
input2, output);
}
case kTfLiteInt64: {
return EvalImpl<int64_t>(context, data->requires_broadcast, input1,
input2, output);
}
case kTfLiteFloat32: {
return EvalImpl<float>(context, data->requires_broadcast, input1, input2,
output);
}
default: {
context->ReportError(context, "Type '%s' is not supported by floor_mod.",
TfLiteTypeGetName(input1->type));
return kTfLiteError;
}
}
}
} // namespace
} // namespace floor_mod
TfLiteRegistration* Register_FLOOR_MOD() {
// Init, Free, Prepare, Eval are satisfying the Interface required by
// TfLiteRegistration.
static TfLiteRegistration r = {floor_mod::Init, floor_mod::Free,
floor_mod::Prepare, floor_mod::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite