STT-tensorflow/tensorflow/lite/kernels/fake_quant.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

95 lines
3.2 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace fake_quant {
// This file has reference implementation of FakeQuant.
enum KernelType {
kReference,
};
struct OpContext {
OpContext(TfLiteContext* context, TfLiteNode* node) {
input = GetInput(context, node, 0);
output = GetOutput(context, node, 0);
}
const TfLiteTensor* input;
TfLiteTensor* output;
};
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const auto* params =
reinterpret_cast<TfLiteFakeQuantParams*>(node->builtin_data);
if (params->narrow_range) {
context->ReportError(
context,
"narrow_range FakeQuant is not currently supported at runtime. "
"narrow_range is only meant to be applied to weights, not activations");
return kTfLiteError;
}
OpContext op_context(context, node);
TfLiteIntArray* output_dims = TfLiteIntArrayCopy(op_context.input->dims);
op_context.output->type = op_context.input->type;
return context->ResizeTensor(context, op_context.output, output_dims);
}
template <KernelType kernel_type>
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
OpContext op_context(context, node);
const auto* params =
reinterpret_cast<TfLiteFakeQuantParams*>(node->builtin_data);
tflite::FakeQuantParams op_params;
op_params.num_bits = params->num_bits;
op_params.minmax.min = params->min;
op_params.minmax.max = params->max;
reference_ops::FakeQuant(op_params, GetTensorShape(op_context.input),
GetTensorData<float>(op_context.input),
GetTensorShape(op_context.output),
GetTensorData<float>(op_context.output));
return kTfLiteOk;
}
} // namespace fake_quant
TfLiteRegistration* Register_FAKE_QUANT_REF() {
static TfLiteRegistration r = {nullptr, nullptr, fake_quant::Prepare,
fake_quant::Eval<fake_quant::kReference>};
return &r;
}
TfLiteRegistration* Register_FAKE_QUANT() { return Register_FAKE_QUANT_REF(); }
} // namespace builtin
} // namespace ops
} // namespace tflite