STT-tensorflow/tensorflow/lite/kernels/embedding_lookup_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

266 lines
9.2 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
for the specific language governing permissions and limitations under the
License.
==============================================================================*/
// Unit test for TFLite Lookup op.
#include <stdint.h>
#include <functional>
#include <initializer_list>
#include <memory>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
float kTestTolerance = 7.41e-03;
using ::testing::ElementsAreArray;
class BaseEmbeddingLookupOpModel : public SingleOpModel {
public:
BaseEmbeddingLookupOpModel(std::initializer_list<int> index_shape,
std::initializer_list<int> weight_shape,
TensorType weight_type = TensorType_FLOAT32,
TensorType output_type = TensorType_FLOAT32) {
input_ = AddInput(TensorType_INT32);
weight_ = AddInput(weight_type);
output_ = AddOutput(output_type);
SetBuiltinOp(BuiltinOperator_EMBEDDING_LOOKUP, BuiltinOptions_NONE, 0);
BuildInterpreter({index_shape, weight_shape});
}
void SetInput(std::initializer_list<int> data) {
PopulateTensor(input_, data);
}
template <typename T>
std::vector<T> GetOutput() {
return ExtractVector<T>(output_);
}
protected:
int input_;
int weight_;
int output_;
};
class EmbeddingLookupOpModel : public BaseEmbeddingLookupOpModel {
public:
using BaseEmbeddingLookupOpModel::BaseEmbeddingLookupOpModel;
template <typename T>
void Set3DWeightMatrix(const std::function<T(int, int, int)>& function) {
TfLiteTensor* tensor = interpreter_->tensor(weight_);
int rows = tensor->dims->data[0];
int columns = tensor->dims->data[1];
int features = tensor->dims->data[2];
T* data = GetTensorData<T>(tensor);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
for (int k = 0; k < features; k++) {
data[(i * columns + j) * features + k] = function(i, j, k);
}
}
}
}
};
class HybridEmbeddingLookupOpModel : public BaseEmbeddingLookupOpModel {
public:
HybridEmbeddingLookupOpModel(std::initializer_list<int> index_shape,
std::initializer_list<int> weight_shape,
TensorType type)
: BaseEmbeddingLookupOpModel(index_shape, weight_shape, type) {}
void SetWeight(std::initializer_list<float> data) {
SymmetricQuantizeAndPopulate(weight_, data);
}
void SetSignedWeight(std::initializer_list<float> data) {
SignedSymmetricQuantizeAndPopulate(weight_, data);
}
};
// TODO(ahentz): write more tests that exercise the details of the op, such as
// lookup errors and variable input shapes.
TEST(EmbeddingLookupOpTest, SimpleTest) {
EmbeddingLookupOpModel m({3}, {3, 2, 4});
m.SetInput({1, 0, 2});
m.Set3DWeightMatrix<float>(
[](int i, int j, int k) -> float { return i + j / 10.0f + k / 100.0f; });
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({
1.00, 1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
})));
}
TEST(HybridEmbeddingLookupHybridOpTest, Simple2DTestUint8) {
HybridEmbeddingLookupOpModel m({3}, {3, 8}, TensorType_UINT8);
m.SetInput({1, 0, 2});
m.SetWeight({
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear(
{
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
},
kTestTolerance)));
}
TEST(HybridEmbeddingLookupHybridOpTest, Simple3DTestUint8) {
HybridEmbeddingLookupOpModel m({3}, {3, 2, 4}, TensorType_UINT8);
m.SetInput({1, 0, 2});
m.SetWeight({
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear(
{
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
},
kTestTolerance)));
}
TEST(HybridEmbeddingLookupHybridOpTest, Simple4DTestUint8) {
HybridEmbeddingLookupOpModel m({3}, {3, 2, 2, 2}, TensorType_UINT8);
m.SetInput({1, 0, 2});
m.SetWeight({
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear(
{
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
},
kTestTolerance)));
}
TEST(HybridEmbeddingLookupHybridOpTest, Simple2DTestInt8) {
HybridEmbeddingLookupOpModel m({3}, {3, 8}, TensorType_INT8);
m.SetInput({1, 0, 2});
m.SetSignedWeight({
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear(
{
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
},
kTestTolerance)));
}
TEST(HybridEmbeddingLookupHybridOpTest, Simple3DTestInt8) {
HybridEmbeddingLookupOpModel m({3}, {3, 2, 4}, TensorType_INT8);
m.SetInput({1, 0, 2});
m.SetSignedWeight({
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear(
{
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
},
kTestTolerance)));
}
TEST(HybridEmbeddingLookupHybridOpTest, Simple4DTestInt8) {
HybridEmbeddingLookupOpModel m({3}, {3, 2, 2, 2}, TensorType_INT8);
m.SetInput({1, 0, 2});
m.SetSignedWeight({
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear(
{
1.00, -1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1
0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0
2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2
},
kTestTolerance)));
}
TEST(EmbeddingLookupHybridOpTest, Simple3DTestQuantized) {
EmbeddingLookupOpModel m({3}, {3, 2, 4}, TensorType_UINT8, TensorType_INT8);
m.SetInput({1, 0, 2});
m.Set3DWeightMatrix<uint8_t>(
[](int i, int j, int k) -> uint8_t { return 100 * i + 10 * j + k; });
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({
100, 101, 102, 103, 110, 111, 112, 113, // Row 1
0, 1, 2, 3, 10, 11, 12, 13, // Row 0
200, 201, 202, 203, 210, 211, 212, 213, // Row 2
}));
}
} // namespace
} // namespace tflite