STT-tensorflow/tensorflow/lite/kernels/cumsum.cc
Renjie Liu 957aacafa5 Promote cumsum as a builtin op.
PiperOrigin-RevId: 337978855
Change-Id: Ia909e529df40ae64776fbff7e3ff22ab9b33bf67
2020-10-19 19:04:06 -07:00

112 lines
3.8 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace cumsum {
static const int kInputTensor = 0;
static const int kAxisTensor = 1;
static const int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* axis = GetInput(context, node, kAxisTensor);
TF_LITE_ENSURE(context, input->type == kTfLiteInt32 ||
input->type == kTfLiteFloat32 ||
input->type == kTfLiteInt64);
TF_LITE_ENSURE_EQ(context, axis->type, kTfLiteInt32);
TF_LITE_ENSURE_EQ(context, NumElements(axis), 1);
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input->dims);
return context->ResizeTensor(context, output, output_shape);
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* axis_tensor = GetInput(context, node, kAxisTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
auto* params = reinterpret_cast<TfLiteCumsumParams*>(node->builtin_data);
int axis = *GetTensorData<int>(axis_tensor);
if (axis < 0) axis += NumDimensions(input);
if (axis < 0 || axis >= NumDimensions(input)) {
TF_LITE_KERNEL_LOG(context, "Invalid axis: ", axis);
return kTfLiteError;
}
switch (input->type) {
case kTfLiteInt32: {
optimized_ops::CumSum(GetTensorData<int>(input), GetTensorShape(input),
axis, params->exclusive, params->reverse,
GetTensorData<int>(output));
break;
}
case kTfLiteInt64: {
optimized_ops::CumSum(GetTensorData<int64_t>(input),
GetTensorShape(input), axis, params->exclusive,
params->reverse, GetTensorData<int64_t>(output));
break;
}
case kTfLiteFloat32: {
optimized_ops::CumSum(GetTensorData<float>(input), GetTensorShape(input),
axis, params->exclusive, params->reverse,
GetTensorData<float>(output));
break;
}
default: {
TF_LITE_KERNEL_LOG(
context,
"Unsupported input type, cumsum only supports int32 & float32.");
return kTfLiteError;
}
}
return kTfLiteOk;
}
} // namespace cumsum
TfLiteRegistration* Register_CUMSUM() {
static TfLiteRegistration r = {nullptr, nullptr, cumsum::Prepare,
cumsum::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite