STT-tensorflow/tensorflow/lite/kernels/cpu_backend_context.h
T.J. Alumbaugh cae2f149e1 Add function to check for deprecated paths via weak symbols.
As a first step, define the function and link with CpuBackendContext.

PiperOrigin-RevId: 347446604
Change-Id: Ib7fb6820daa18194dd54081d233c8ae960bda5f1
2020-12-14 12:46:50 -08:00

124 lines
4.0 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_CPU_BACKEND_CONTEXT_H_
#define TENSORFLOW_LITE_KERNELS_CPU_BACKEND_CONTEXT_H_
#if (defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || \
defined(_M_X64))
#define TFLITE_X86_PLATFORM
#endif
#include <memory>
#include "public/gemmlowp.h"
#include "ruy/context.h" // from @ruy
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/external_cpu_backend_context.h"
namespace tflite {
class CpuBackendContext final : public TfLiteInternalBackendContext {
public:
static CpuBackendContext* GetFromContext(TfLiteContext* context);
CpuBackendContext();
~CpuBackendContext() override;
ruy::Context* ruy_context() const { return ruy_context_.get(); }
gemmlowp::GemmContext* gemmlowp_context() const {
return gemmlowp_context_.get();
}
// Sets the maximum-number-of-threads-to-use parameter, only as a means of
// passing around this information.
void SetMaxNumThreads(int max_num_threads) override;
int max_num_threads() const { return max_num_threads_; }
void SetUseCaching(bool flag);
bool use_caching() const { return use_caching_; }
void ClearCaches() override { ruy_context_->ClearPrepackedCache(); }
bool HasAvxOrAbove();
// Gemmlowp on x86 is a deprecated path but some clients may still use
// this path based on link time dependencies.
bool PreferGemmlowpOnX86();
private:
// Copy the wrapper class for cpuinfo from Ruy.
class CpuInfo final {
public:
CpuInfo() {}
~CpuInfo();
// X86 features
bool Avx();
bool Avx2Fma();
bool Avx512();
private:
enum class InitStatus {
kNotYetAttempted,
kInitialized,
kFailed,
};
InitStatus init_status_ = InitStatus::kNotYetAttempted;
bool EnsureInitialized();
InitStatus Initialize();
CpuInfo(const CpuInfo&) = delete;
CpuInfo& operator=(const CpuInfo&) = delete;
};
// To enable a smooth transition from the current direct usage
// of the underlying gemmlowp context to going through abstractions
// (see :cpu_backend_gemm), for now a CpuBackendContext always
// stores both a gemmlowp context and a ruy context.
// TODO(b/131416458): Once call sites all go through abstractions,
// elide what can be elided based on TFLITE_WITH_RUY.
const std::unique_ptr<ruy::Context> ruy_context_;
const std::unique_ptr<gemmlowp::GemmContext> gemmlowp_context_;
CpuInfo cpuinfo_;
// The maximum of threads used for parallelizing TfLite ops. However,
// cpu_backend_threadpool::Execute creates as many threads as it's
// asked to, regardless of this. Typically a call site would query
// cpu_backend_context->max_num_threads() and used that to determine
// the number of tasks to create and to give to
// cpu_backend_threadpool::Execute.
//
// This value also gets propagated to back-ends, where it plays the same
// information-only role.
int max_num_threads_;
// For matrix muliplications with constants parameters (i.e. weights), we can
// sometimes provide speedups by caching the "prepacked" data, for some
// additional memory cost. This flag permits the user to route all
// CpuBackendGem operations to a library that permits such an optimization
// (currently the Ruy library only).
bool use_caching_;
CpuBackendContext(const CpuBackendContext&) = delete;
};
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_CPU_BACKEND_CONTEXT_H_