As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332521299 Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
143 lines
5.1 KiB
C++
143 lines
5.1 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <algorithm>
|
|
#include <complex>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace cast {
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
// TODO(ahentz): these two checks would make the new implementation
|
|
// incompatible with some existing models, where params is not specified. It
|
|
// is OK not to have them because toco would have set input and output types
|
|
// to match the parameters.
|
|
// auto* params = reinterpret_cast<TfLiteCastParams*>(node->builtin_data);
|
|
// TF_LITE_ENSURE_EQ(context, input->type, params->in_data_type);
|
|
// TF_LITE_ENSURE_EQ(context, output->type, params->out_data_type);
|
|
|
|
return context->ResizeTensor(context, output,
|
|
TfLiteIntArrayCopy(input->dims));
|
|
}
|
|
|
|
template <typename FromT, typename ToT>
|
|
void copyCast(const FromT* in, ToT* out, int num_elements) {
|
|
std::transform(in, in + num_elements, out,
|
|
[](FromT a) { return static_cast<ToT>(a); });
|
|
}
|
|
|
|
template <typename ToT>
|
|
void copyCast(const std::complex<float>* in, ToT* out, int num_elements) {
|
|
std::transform(in, in + num_elements, out, [](std::complex<float> a) {
|
|
return static_cast<ToT>(std::real(a));
|
|
});
|
|
}
|
|
|
|
template <>
|
|
void copyCast(const std::complex<float>* in, std::complex<float>* out,
|
|
int num_elements) {
|
|
std::transform(in, in + num_elements, out,
|
|
[](std::complex<float> a) { return a; });
|
|
}
|
|
|
|
template <typename FromT>
|
|
TfLiteStatus copyToTensor(TfLiteContext* context, const FromT* in,
|
|
TfLiteTensor* out, int num_elements) {
|
|
switch (out->type) {
|
|
case kTfLiteInt64:
|
|
copyCast(in, out->data.i64, num_elements);
|
|
break;
|
|
case kTfLiteInt32:
|
|
copyCast(in, out->data.i32, num_elements);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
copyCast(in, out->data.uint8, num_elements);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
copyCast(in, GetTensorData<float>(out), num_elements);
|
|
break;
|
|
case kTfLiteBool:
|
|
copyCast(in, out->data.b, num_elements);
|
|
break;
|
|
case kTfLiteComplex64:
|
|
copyCast(in, reinterpret_cast<std::complex<float>*>(out->data.c64),
|
|
num_elements);
|
|
break;
|
|
default:
|
|
// Unsupported type.
|
|
TF_LITE_UNSUPPORTED_TYPE(context, out->type, "Cast");
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
const int num_elements = NumElements(input);
|
|
TF_LITE_ENSURE_EQ(context, num_elements, NumElements(output));
|
|
switch (input->type) {
|
|
case kTfLiteInt64:
|
|
return copyToTensor(context, input->data.i64, output, num_elements);
|
|
case kTfLiteInt32:
|
|
return copyToTensor(context, input->data.i32, output, num_elements);
|
|
case kTfLiteUInt8:
|
|
return copyToTensor(context, input->data.uint8, output, num_elements);
|
|
case kTfLiteFloat32:
|
|
return copyToTensor(context, GetTensorData<float>(input), output,
|
|
num_elements);
|
|
case kTfLiteBool:
|
|
return copyToTensor(context, input->data.b, output, num_elements);
|
|
case kTfLiteComplex64:
|
|
return copyToTensor(
|
|
context, reinterpret_cast<std::complex<float>*>(input->data.c64),
|
|
output, num_elements);
|
|
default:
|
|
// Unsupported type.
|
|
TF_LITE_UNSUPPORTED_TYPE(context, input->type, "Cast");
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace cast
|
|
|
|
TfLiteRegistration* Register_CAST() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, cast::Prepare, cast::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|