As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332521299 Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
176 lines
6.1 KiB
C++
176 lines
6.1 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <math.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "flatbuffers/flexbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/spectrogram.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace custom {
|
|
namespace audio_spectrogram {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
enum KernelType {
|
|
kReference,
|
|
};
|
|
|
|
typedef struct {
|
|
int window_size;
|
|
int stride;
|
|
bool magnitude_squared;
|
|
int output_height;
|
|
internal::Spectrogram* spectrogram;
|
|
} TfLiteAudioSpectrogramParams;
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* data = new TfLiteAudioSpectrogramParams;
|
|
|
|
const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
|
|
|
|
const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
|
|
data->window_size = m["window_size"].AsInt64();
|
|
data->stride = m["stride"].AsInt64();
|
|
data->magnitude_squared = m["magnitude_squared"].AsBool();
|
|
|
|
data->spectrogram = new internal::Spectrogram;
|
|
|
|
return data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
auto* params = reinterpret_cast<TfLiteAudioSpectrogramParams*>(buffer);
|
|
delete params->spectrogram;
|
|
delete params;
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteAudioSpectrogramParams*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 2);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
|
|
|
TF_LITE_ENSURE(context, params->spectrogram->Initialize(params->window_size,
|
|
params->stride));
|
|
const int64_t sample_count = input->dims->data[0];
|
|
const int64_t length_minus_window = (sample_count - params->window_size);
|
|
if (length_minus_window < 0) {
|
|
params->output_height = 0;
|
|
} else {
|
|
params->output_height = 1 + (length_minus_window / params->stride);
|
|
}
|
|
TfLiteIntArray* output_size = TfLiteIntArrayCreate(3);
|
|
output_size->data[0] = input->dims->data[1];
|
|
output_size->data[1] = params->output_height;
|
|
output_size->data[2] = params->spectrogram->output_frequency_channels();
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteAudioSpectrogramParams*>(node->user_data);
|
|
|
|
const TfLiteTensor* input;
|
|
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
|
TfLiteTensor* output;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetOutputSafe(context, node, kOutputTensor, &output));
|
|
|
|
TF_LITE_ENSURE(context, params->spectrogram->Initialize(params->window_size,
|
|
params->stride));
|
|
|
|
const float* input_data = GetTensorData<float>(input);
|
|
|
|
const int64_t sample_count = input->dims->data[0];
|
|
const int64_t channel_count = input->dims->data[1];
|
|
|
|
const int64_t output_width = params->spectrogram->output_frequency_channels();
|
|
|
|
float* output_flat = GetTensorData<float>(output);
|
|
|
|
std::vector<float> input_for_channel(sample_count);
|
|
for (int64_t channel = 0; channel < channel_count; ++channel) {
|
|
float* output_slice =
|
|
output_flat + (channel * params->output_height * output_width);
|
|
for (int i = 0; i < sample_count; ++i) {
|
|
input_for_channel[i] = input_data[i * channel_count + channel];
|
|
}
|
|
std::vector<std::vector<float>> spectrogram_output;
|
|
TF_LITE_ENSURE(context,
|
|
params->spectrogram->ComputeSquaredMagnitudeSpectrogram(
|
|
input_for_channel, &spectrogram_output));
|
|
TF_LITE_ENSURE_EQ(context, spectrogram_output.size(),
|
|
params->output_height);
|
|
TF_LITE_ENSURE(context, spectrogram_output.empty() ||
|
|
(spectrogram_output[0].size() == output_width));
|
|
for (int row_index = 0; row_index < params->output_height; ++row_index) {
|
|
const std::vector<float>& spectrogram_row = spectrogram_output[row_index];
|
|
TF_LITE_ENSURE_EQ(context, spectrogram_row.size(), output_width);
|
|
float* output_row = output_slice + (row_index * output_width);
|
|
if (params->magnitude_squared) {
|
|
for (int i = 0; i < output_width; ++i) {
|
|
output_row[i] = spectrogram_row[i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < output_width; ++i) {
|
|
output_row[i] = sqrtf(spectrogram_row[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace audio_spectrogram
|
|
|
|
TfLiteRegistration* Register_AUDIO_SPECTROGRAM() {
|
|
static TfLiteRegistration r = {
|
|
audio_spectrogram::Init, audio_spectrogram::Free,
|
|
audio_spectrogram::Prepare,
|
|
audio_spectrogram::Eval<audio_spectrogram::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace custom
|
|
} // namespace ops
|
|
} // namespace tflite
|