Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/35985 This PR is one of steps to extend 8-bit quantization to support symmetric 16-bit activations. Each activation is of type int16 and symmetric around zero. The weight tensor precision remains at 8-bit signed values. The bias is set to int64 precision. In this PR we introduce implementation and tests for ADD/SUB kernel reference function. The specification of this operator: SUB Input 0: data_type : int16 range : [-32768, 32767] granularity: per-tensor, zero_point=0 Input 1: data_type : int16 range : [-32768, 32767] granularity: per-tensor, zero_point=0 Output 0: data_type : int16 range : [-32768, 32767] granularity: per-tensor, zero_point=0 ADD Input 0: data_type : int16 range : [-32768, 32767] granularity: per-tensor, zero_point=0 Input 1: data_type : int16 range : [-32768, 32767] granularity: per-tensor, zero_point=0 Output 0: data_type : int16 range : [-32768, 32767] granularity: per-tensor, zero_point=0 Copybara import of the project: --b94cb4732a
by Elena Zhelezina <elena.zhelezina@arm.com>: Added 16-bit version of ADD/SUB operators. Broadcasting is included. --924d0b72c5
by Elena Zhelezina <elena.zhelezina@arm.com>: Addressed reviewer comments. --dd0d9e8f03
by Elena Zhelezina <elena.zhelezina@arm.com>: Added versioning to ADD/SUB + some rework of the existing code. --abae3fd9a9
by Elena Zhelezina <elena.zhelezina@arm.com>: Added versioning for ADD/SUB with new option in the schema.fbs schema_generated.h is edited manually. --24f3f5593a
by Elena Zhelezina <elena.zhelezina@arm.com>: Fix for broken build. --d252fe175a
by Elena Zhelezina <elena.zhelezina@arm.com>: Fix for the failing internal test for NN delegates. --2223a5c380
by Elena Zhelezina <elena.zhelezina@arm.com>: Fix for asan failures. Change-Id: I2cf421ddda7f9e802202239136ab062bcd63b4aa --3c219a46ce
by Elena Zhelezina <elena.zhelezina@arm.com>: Added broadcast params to addsub structure. Change-Id: I61d7d4a94087d052a782890799211031f6ed3015 --9131a38c77
by Elena Zhelezina <elena.zhelezina@arm.com>: Corrected defaults. Change-Id: I9ea50c75014cc03ac91fdef0f5b4fe11395f7074 PiperOrigin-RevId: 324865496
547 lines
23 KiB
C++
547 lines
23 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class BaseAddOpModel : public SingleOpModel {
|
|
public:
|
|
BaseAddOpModel(const TensorData& input1, const TensorData& input2,
|
|
const TensorData& output,
|
|
ActivationFunctionType activation_type) {
|
|
input1_ = AddInput(input1);
|
|
input2_ = AddInput(input2);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions,
|
|
CreateAddOptions(builder_, activation_type).Union());
|
|
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
|
|
}
|
|
|
|
int input1() { return input1_; }
|
|
int input2() { return input2_; }
|
|
|
|
protected:
|
|
int input1_;
|
|
int input2_;
|
|
int output_;
|
|
};
|
|
|
|
class FloatAddOpModel : public BaseAddOpModel {
|
|
public:
|
|
using BaseAddOpModel::BaseAddOpModel;
|
|
|
|
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
|
};
|
|
|
|
class IntegerAddOpModel : public BaseAddOpModel {
|
|
public:
|
|
using BaseAddOpModel::BaseAddOpModel;
|
|
|
|
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
|
|
};
|
|
|
|
class QuantizedAddOpModel : public BaseAddOpModel {
|
|
public:
|
|
using BaseAddOpModel::BaseAddOpModel;
|
|
|
|
template <typename integer_dtype>
|
|
std::vector<float> GetDequantizedOutput() {
|
|
return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_),
|
|
GetScale(output_), GetZeroPoint(output_));
|
|
}
|
|
|
|
std::vector<float> GetDequantizedOutputInt16() {
|
|
return Dequantize<int16_t>(ExtractVector<int16_t>(output_),
|
|
GetScale(output_), GetZeroPoint(output_));
|
|
}
|
|
};
|
|
|
|
// for quantized Add, the error shouldn't exceed step
|
|
float GetTolerance(float min, float max) {
|
|
float kQuantizedStep = (max - min) / 255.0;
|
|
return kQuantizedStep;
|
|
}
|
|
|
|
float GetToleranceInt16(float min, float max) {
|
|
float kQuantizedStep = (max - min) / 32767.f;
|
|
return kQuantizedStep;
|
|
}
|
|
|
|
TEST(FloatAddOpModel, NoActivation) {
|
|
FloatAddOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
|
|
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3}));
|
|
}
|
|
|
|
TEST(FloatAddOpModel, ActivationRELU_N1_TO_1) {
|
|
FloatAddOpModel m(
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_RELU_N1_TO_1);
|
|
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
|
|
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.0, 0.4, 1.0, 1.0}));
|
|
}
|
|
|
|
TEST(FloatAddOpModel, VariousInputShapes) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
FloatAddOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
|
|
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5, 1.1, 0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray({-1.9, 0.4, 1.0, 1.3, 2.2, 2.1}))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(FloatAddOpModel, WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
FloatAddOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, // always a scalar
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
|
|
m.PopulateTensor<float>(m.input2(), {0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({-1.9, 0.3, 0.8, 0.9, 1.2, 2.1})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(FloatAddOpModel, WithBroadcastGeneric) {
|
|
std::vector<int> test_shape1 = {1, 3, 1};
|
|
std::vector<int> test_shape2 = {2, 1, 2};
|
|
FloatAddOpModel m({TensorType_FLOAT32, test_shape1},
|
|
{TensorType_FLOAT32, test_shape2}, {TensorType_FLOAT32, {}},
|
|
ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {0.1, 0.2, 0.3});
|
|
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.4});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({0.2, 0.3, 0.3, 0.4, 0.4, 0.5,
|
|
0.4, 0.5, 0.5, 0.6, 0.6, 0.7})));
|
|
}
|
|
|
|
TEST(FloatAddOpModel, MixedBroadcast) {
|
|
const std::vector<int> base_shape = {2, 3, 1, 2};
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{1, 1, 3, 2}, {1, 3, 1, 2}, {2, 1, 3, 1}, {2, 3, 1, 1}};
|
|
std::vector<std::vector<float>> test_outputs = {
|
|
{-0.1f, 2.6f, -0.7f, 2.8f, 0.7f, 3.2f, 1.1f, 0.8f, 0.5f,
|
|
1.0f, 1.9f, 1.4f, 1.0f, -0.8f, 0.4f, -0.6f, 1.8f, -0.2f,
|
|
1.4f, 3.1f, 0.8f, 3.3f, 2.2f, 3.7f, -1.4f, 0.3f, -2.0f,
|
|
0.5f, -0.6f, 0.9f, 0.9f, -1.9f, 0.3f, -1.7f, 1.7f, -1.3f},
|
|
{-0.1f, 2.6f, 0.5f, 1.0f, 1.8f, -0.2f, 1.4f, 3.1f, -2.0f, 0.5f, 1.7f,
|
|
-1.3f},
|
|
{-0.1f, 2.5f, 0.0f, 2.6f, -0.7f, 1.9f, 1.1f, 0.7f, 1.2f,
|
|
0.8f, 0.5f, 0.1f, 1.0f, -0.9f, 1.1f, -0.8f, 0.4f, -1.5f,
|
|
1.7f, 3.3f, 2.2f, 3.8f, 2.1f, 3.7f, -1.1f, 0.5f, -0.6f,
|
|
1.0f, -0.7f, 0.9f, 1.2f, -1.7f, 1.7f, -1.2f, 1.6f, -1.3f},
|
|
{-0.1f, 2.5f, 1.2f, 0.8f, 0.4f, -1.5f, 1.7f, 3.3f, -0.6f, 1.0f, 1.6f,
|
|
-1.3f}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
FloatAddOpModel model_fixture(
|
|
{TensorType_FLOAT32, base_shape}, {TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
model_fixture.PopulateTensor<float>(
|
|
model_fixture.input1(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
|
|
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
|
|
model_fixture.PopulateTensor<float>(model_fixture.input2(),
|
|
{0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
|
|
model_fixture.Invoke();
|
|
EXPECT_THAT(model_fixture.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(test_outputs[i], 0.0001f)))
|
|
<< "With shape number " << i;
|
|
}
|
|
// Re-run with exchanged inputs.
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
FloatAddOpModel model_fixture(
|
|
{TensorType_FLOAT32, test_shapes[i]}, {TensorType_FLOAT32, base_shape},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
model_fixture.PopulateTensor<float>(model_fixture.input1(),
|
|
{0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
|
|
model_fixture.PopulateTensor<float>(
|
|
model_fixture.input2(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
|
|
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
|
|
model_fixture.Invoke();
|
|
EXPECT_THAT(model_fixture.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(test_outputs[i], 0.0001f)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerAddOpModel, NoActivation) {
|
|
IntegerAddOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
|
|
ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-19, 4, 10, 13}));
|
|
}
|
|
|
|
TEST(IntegerAddOpModel, ActivationRELU_N1_TO_1) {
|
|
IntegerAddOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
|
|
ActivationFunctionType_RELU_N1_TO_1);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, 1, 1}));
|
|
}
|
|
|
|
TEST(IntegerAddOpModel, VariousInputShapes) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
IntegerAddOpModel m({TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5, 11, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-19, 04, 10, 13, 22, 21}))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerAddOpModel, WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
IntegerAddOpModel m({TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, {}}, // always a scalar
|
|
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({-19, 3, 8, 9, 12, 21})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerAddOpModel, Int32MultiDimBroadcast) {
|
|
IntegerAddOpModel m({TensorType_INT32, {1, 2}}, {TensorType_INT32, {2, 1}},
|
|
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {3, 5});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 4});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({4, 6, 7, 9}));
|
|
}
|
|
|
|
TEST(IntegerAddOpModel, Float32MultiDimBroadcast) {
|
|
FloatAddOpModel m({TensorType_FLOAT32, {1, 2}}, {TensorType_FLOAT32, {2, 1}},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {3, 5});
|
|
m.PopulateTensor<float>(m.input2(), {1, 4});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({4, 6, 7, 9}));
|
|
}
|
|
|
|
template <TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedTestsNoActivation() {
|
|
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
|
std::vector<std::vector<float>> inputs1 = {
|
|
{0.1, 0.2, 0.3, 0.4}, {-0.8, 0.2, 0.4, 0.7}, {-0.8, 0.2, 0.7, 0.3}};
|
|
std::vector<std::vector<float>> inputs2 = {
|
|
{0.6, 0.4, 0.3, 0.1}, {0.6, 0.4, 0.5, -0.8}, {0.6, 0.4, -0.8, 0.5}};
|
|
std::vector<std::vector<float>> results = {
|
|
{0.7, 0.6, 0.6, 0.5}, {-0.2, 0.6, 0.9, -0.1}, {-0.2, 0.6, -0.1, 0.8}};
|
|
for (size_t i = 0; i < inputs1.size(); ++i) {
|
|
QuantizedAddOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {}, -1.0, 1.0},
|
|
ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(), inputs1[i]);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(), inputs2[i]);
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
|
|
<< "With test number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedTestsNoActivationUInt8) {
|
|
QuantizedTestsNoActivation<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedTestsNoActivationInt8) {
|
|
QuantizedTestsNoActivation<TensorType_INT8, int8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedTestsNoActivationInt16) {
|
|
const float kMin = -1.f;
|
|
const float kMax = 32767.f / 32768.f;
|
|
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
|
|
std::vector<std::vector<float>> inputs1 = {{0.1, 0.2, 0.3, 0.4, 0.9, 0.7},
|
|
{-0.8, 0.2, 0.4, 0.7, 0.1, 0.0},
|
|
{-0.8, 0.2, 0.7, 0.3, 0.9, 0.1}};
|
|
std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.3, 0.1, -0.1, 0.3},
|
|
{0.6, 0.4, 0.5, -0.8, 0.0, -1.0},
|
|
{0.6, 0.4, -0.8, 0.5, -0.9, 0.1}};
|
|
std::vector<std::vector<float>> results = {{0.7, 0.6, 0.6, 0.5, 0.8, 1.0},
|
|
{-0.2, 0.6, 0.9, -0.1, 0.1, -1.0},
|
|
{-0.2, 0.6, -0.1, 0.8, 0.0, 0.2}};
|
|
for (size_t i = 0; i < inputs1.size(); ++i) {
|
|
QuantizedAddOpModel m({TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
|
|
{TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
|
|
{TensorType_INT16, {}, kMin, kMax},
|
|
ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<int16_t>(m.input1(), inputs1[i]);
|
|
m.QuantizeAndPopulate<int16_t>(m.input2(), inputs2[i]);
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetDequantizedOutputInt16(),
|
|
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
|
|
<< "With test number " << i;
|
|
}
|
|
}
|
|
|
|
template <enum TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedTestsActivationRELU_N1_TO_1() {
|
|
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
|
std::vector<std::vector<float>> inputs1 = {{-0.8, 0.2, 0.9, 0.7},
|
|
{-0.8, 0.2, 0.7, 0.3}};
|
|
std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.9, -0.8},
|
|
{0.6, 0.4, -0.8, 0.5}};
|
|
std::vector<std::vector<float>> results = {{-0.2, 0.6, 1.0, -0.1},
|
|
{-0.2, 0.6, -0.1, 0.8}};
|
|
for (size_t i = 0; i < inputs1.size(); ++i) {
|
|
QuantizedAddOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {}, -1.0, 1.0},
|
|
ActivationFunctionType_RELU_N1_TO_1);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(), inputs1[i]);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(), inputs2[i]);
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
|
|
<< "With test number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedTestsActivationRELU_N1_TO_1UInt8) {
|
|
QuantizedTestsActivationRELU_N1_TO_1<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedTestsActivationRELU_N1_TO_1Int8) {
|
|
QuantizedTestsActivationRELU_N1_TO_1<TensorType_INT8, int8_t>();
|
|
}
|
|
|
|
template <enum TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedVariousInputShapes() {
|
|
float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedAddOpModel m({tensor_type, test_shapes[i], -3.0, 3.0},
|
|
{tensor_type, test_shapes[i], -3.0, 3.0},
|
|
{tensor_type, {}, -3.0, 3.0},
|
|
ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
|
|
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(),
|
|
{0.1, 0.3, 0.3, 0.5, 1.1, 0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear({-1.9, 0.5, 1.0, 1.3, 2.2, 2.1},
|
|
kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedVariousInputShapesUInt8) {
|
|
QuantizedVariousInputShapes<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedVariousInputShapesInt8) {
|
|
QuantizedVariousInputShapes<TensorType_INT8, int8_t>();
|
|
}
|
|
|
|
template <enum TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedWithScalarBroadcast() {
|
|
float kQuantizedTolerance = GetTolerance(-3.f, 3.f);
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedAddOpModel model_fixture(
|
|
{tensor_type, test_shapes[i], -3.f, 3.f}, {tensor_type, {}, -3.f, 3.f},
|
|
{tensor_type, {}, -3.f, 3.f}, ActivationFunctionType_NONE);
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(
|
|
model_fixture.input1(), {-2.0f, 0.2f, 0.7f, 0.8f, 1.1f, 2.0f});
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(model_fixture.input2(),
|
|
{0.1f});
|
|
model_fixture.Invoke();
|
|
EXPECT_THAT(
|
|
model_fixture.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear({-1.9f, 0.3f, 0.8f, 0.9f, 1.2f, 2.1f},
|
|
kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
// Re-run with exchanged inputs.
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedAddOpModel model_fixture(
|
|
{tensor_type, {}, -3.f, 3.f}, {tensor_type, test_shapes[i], -3.f, 3.f},
|
|
{tensor_type, {}, -3.f, 3.f}, ActivationFunctionType_NONE);
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(model_fixture.input1(),
|
|
{0.1f});
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(
|
|
model_fixture.input2(), {-2.0f, 0.2f, 0.7f, 0.8f, 1.1f, 2.0f});
|
|
model_fixture.Invoke();
|
|
EXPECT_THAT(
|
|
model_fixture.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear({-1.9f, 0.3f, 0.8f, 0.9f, 1.2f, 2.1f},
|
|
kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastUInt8) {
|
|
QuantizedWithScalarBroadcast<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastInt8) {
|
|
QuantizedWithScalarBroadcast<TensorType_INT8, int8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastInt16) {
|
|
QuantizedWithScalarBroadcast<TensorType_INT16, int16_t>();
|
|
}
|
|
|
|
template <enum TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedWithMixedBroadcast() {
|
|
float kQuantizedTolerance = GetTolerance(-3.f, 3.f);
|
|
const std::vector<int> base_shape = {2, 3, 1, 2};
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{1, 1, 3, 2}, {1, 3, 1, 2}, {2, 1, 3, 1}, {2, 3, 1, 1}};
|
|
std::vector<std::vector<float>> test_outputs = {
|
|
{-0.1f, 2.6f, -0.7f, 2.8f, 0.7f, 3.0f, 1.1f, 0.8f, 0.5f,
|
|
1.0f, 1.9f, 1.4f, 1.0f, -0.8f, 0.4f, -0.6f, 1.8f, -0.2f,
|
|
1.4f, 3.0f, 0.8f, 3.0f, 2.2f, 3.0f, -1.4f, 0.3f, -2.0f,
|
|
0.5f, -0.6f, 0.9f, 0.9f, -1.9f, 0.3f, -1.7f, 1.7f, -1.3f},
|
|
{-0.1f, 2.6f, 0.5f, 1.0f, 1.8f, -0.2f, 1.4f, 3.0f, -2.0f, 0.5f, 1.7f,
|
|
-1.3f},
|
|
{-0.1f, 2.5f, 0.0f, 2.6f, -0.7f, 1.9f, 1.1f, 0.7f, 1.2f,
|
|
0.8f, 0.5f, 0.1f, 1.0f, -0.9f, 1.1f, -0.8f, 0.4f, -1.5f,
|
|
1.7f, 3.0f, 2.2f, 3.0f, 2.1f, 3.0f, -1.1f, 0.5f, -0.6f,
|
|
1.0f, -0.7f, 0.9f, 1.2f, -1.7f, 1.7f, -1.2f, 1.6f, -1.3f},
|
|
{-0.1f, 2.5f, 1.2f, 0.8f, 0.4f, -1.5f, 1.7f, 3.0f, -0.6f, 1.0f, 1.6f,
|
|
-1.3f}};
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedAddOpModel model_fixture({tensor_type, base_shape, -3.f, 3.f},
|
|
{tensor_type, test_shapes[i], -3.f, 3.f},
|
|
{tensor_type, {}, -3.f, 3.f},
|
|
ActivationFunctionType_NONE);
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(
|
|
model_fixture.input1(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
|
|
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(
|
|
model_fixture.input2(), {0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
|
|
model_fixture.Invoke();
|
|
EXPECT_THAT(
|
|
model_fixture.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(test_outputs[i], kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
// Re-run with exchanged inputs.
|
|
for (size_t i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedAddOpModel model_fixture({tensor_type, test_shapes[i], -3.f, 3.f},
|
|
{tensor_type, base_shape, -3.f, 3.f},
|
|
{tensor_type, {}, -3.f, 3.f},
|
|
ActivationFunctionType_NONE);
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(
|
|
model_fixture.input1(), {0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
|
|
model_fixture.QuantizeAndPopulate<integer_dtype>(
|
|
model_fixture.input2(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
|
|
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
|
|
model_fixture.Invoke();
|
|
EXPECT_THAT(
|
|
model_fixture.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(test_outputs[i], kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastUInt8) {
|
|
QuantizedWithMixedBroadcast<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastInt8) {
|
|
QuantizedWithMixedBroadcast<TensorType_INT8, int8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastInt16) {
|
|
QuantizedWithMixedBroadcast<TensorType_INT16, int16_t>();
|
|
}
|
|
|
|
template <enum TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedWithGenericBroadcast() {
|
|
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
|
std::vector<int> test_shape1 = {1, 3, 1};
|
|
std::vector<int> test_shape2 = {2, 1, 2};
|
|
QuantizedAddOpModel m({tensor_type, test_shape1, -1.0, 1.0},
|
|
{tensor_type, test_shape2, -1.0, 1.0},
|
|
{tensor_type, {}, -1.0, 1.0},
|
|
ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {0.1, 0.2, 0.3});
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.1, -0.2, 0.3, -0.4});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear({0.2, -0.1, 0.3, 0., 0.4, 0.1,
|
|
0.4, -0.3, 0.5, -0.2, 0.6, -0.1},
|
|
kQuantizedTolerance)));
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithGenericBroadcastUInt8) {
|
|
QuantizedWithGenericBroadcast<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithGenericdBroadcastInt8) {
|
|
QuantizedWithGenericBroadcast<TensorType_INT8, int8_t>();
|
|
}
|
|
|
|
TEST(QuantizedAddOpModel, QuantizedWithGenericdBroadcastInt16) {
|
|
QuantizedWithGenericBroadcast<TensorType_INT16, int16_t>();
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|