99 lines
2.9 KiB
C++
99 lines
2.9 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/experimental/resource/resource_variable.h"
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <map>
|
|
#include <memory>
|
|
|
|
namespace tflite {
|
|
namespace resource {
|
|
|
|
ResourceVariable::ResourceVariable() {
|
|
memset(&tensor_, 0, sizeof(TfLiteTensor));
|
|
}
|
|
|
|
ResourceVariable::ResourceVariable(ResourceVariable&& other) {
|
|
tensor_ = other.tensor_;
|
|
is_initialized_ = other.is_initialized_;
|
|
|
|
memset(&other.tensor_, 0, sizeof(TfLiteTensor));
|
|
other.is_initialized_ = false;
|
|
}
|
|
|
|
ResourceVariable::~ResourceVariable() {
|
|
if (is_initialized_) {
|
|
free(tensor_.data.raw);
|
|
if (tensor_.dims) {
|
|
TfLiteIntArrayFree(tensor_.dims);
|
|
}
|
|
}
|
|
}
|
|
|
|
TfLiteStatus ResourceVariable::AssignFrom(const TfLiteTensor* tensor) {
|
|
// Save the old allocated resources and attributes that we might use.
|
|
char* old_raw = tensor_.data.raw;
|
|
size_t old_bytes = tensor_.bytes;
|
|
TfLiteIntArray* old_dims = tensor_.dims;
|
|
|
|
// Copy primitive parameters.
|
|
memset(&tensor_, 0, sizeof(tensor_));
|
|
tensor_.allocation_type = kTfLiteDynamic;
|
|
tensor_.type = tensor->type;
|
|
tensor_.params = tensor->params;
|
|
tensor_.quantization = tensor->quantization;
|
|
|
|
// Copy old shape if possible otherwise create a new one.
|
|
if (TfLiteIntArrayEqual(old_dims, tensor->dims)) {
|
|
tensor_.dims = old_dims;
|
|
} else {
|
|
TfLiteIntArrayFree(old_dims);
|
|
tensor_.dims = TfLiteIntArrayCopy(tensor->dims);
|
|
}
|
|
|
|
// Reuse the same buffer if possible otherwise allocate a new one.
|
|
tensor_.data.raw = old_raw;
|
|
if (old_bytes != tensor->bytes) {
|
|
TfLiteTensorRealloc(tensor->bytes, &tensor_);
|
|
}
|
|
|
|
memcpy(tensor_.data.raw, tensor->data.raw, tensor_.bytes);
|
|
is_initialized_ = true;
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
void CreateResourceVariableIfNotAvailable(ResourceMap* resources,
|
|
int resource_id) {
|
|
if (resources->count(resource_id) != 0) {
|
|
return;
|
|
}
|
|
resources->emplace(
|
|
resource_id, std::unique_ptr<ResourceVariable>(new ResourceVariable()));
|
|
}
|
|
|
|
ResourceVariable* GetResourceVariable(ResourceMap* resources, int resource_id) {
|
|
auto it = resources->find(resource_id);
|
|
if (it != resources->end()) {
|
|
return static_cast<ResourceVariable*>(it->second.get());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace resource
|
|
} // namespace tflite
|