STT-tensorflow/tensorflow/lite/examples/label_image/label_image.cc
Vladimir Silyaev 396fe082fd [lite] Use std::endl to force flush of output
Change-Id: Id44c6731e93bbada4ba086db91974ac7e2d65c40
2020-11-04 16:06:57 -08:00

577 lines
20 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/examples/label_image/label_image.h"
#include <fcntl.h> // NOLINT(build/include_order)
#include <getopt.h> // NOLINT(build/include_order)
#include <sys/time.h> // NOLINT(build/include_order)
#include <sys/types.h> // NOLINT(build/include_order)
#include <sys/uio.h> // NOLINT(build/include_order)
#include <unistd.h> // NOLINT(build/include_order)
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
#include "absl/memory/memory.h"
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h"
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
#include "tensorflow/lite/examples/label_image/bitmap_helpers.h"
#include "tensorflow/lite/examples/label_image/get_top_n.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/optional_debug_tools.h"
#include "tensorflow/lite/profiling/profiler.h"
#include "tensorflow/lite/string_util.h"
#include "tensorflow/lite/tools/command_line_flags.h"
#include "tensorflow/lite/tools/delegates/delegate_provider.h"
#include "tensorflow/lite/tools/evaluation/utils.h"
#if defined(__ANDROID__)
#include "tensorflow/lite/delegates/gpu/delegate.h"
#endif
#include "tensorflow/lite/examples/label_image/log.h"
namespace tflite {
namespace label_image {
double get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); }
using TfLiteDelegatePtr = tflite::Interpreter::TfLiteDelegatePtr;
using TfLiteDelegatePtrMap = std::map<std::string, TfLiteDelegatePtr>;
class DelegateProviders {
public:
DelegateProviders()
: delegates_list_(tflite::tools::GetRegisteredDelegateProviders()) {
for (const auto& delegate : delegates_list_) {
params_.Merge(delegate->DefaultParams());
}
}
// Initialize delegate-related parameters from parsing command line arguments,
// and remove the matching arguments from (*argc, argv). Returns true if all
// recognized arg values are parsed correctly.
bool InitFromCmdlineArgs(int* argc, const char** argv) {
std::vector<tflite::Flag> flags;
for (const auto& delegate : delegates_list_) {
auto delegate_flags = delegate->CreateFlags(&params_);
flags.insert(flags.end(), delegate_flags.begin(), delegate_flags.end());
}
const bool parse_result = Flags::Parse(argc, argv, flags);
if (!parse_result) {
std::string usage = Flags::Usage(argv[0], flags);
LOG(ERROR) << usage;
}
return parse_result;
}
// Create a list of TfLite delegates based on what have been initialized (i.e.
// 'params_').
TfLiteDelegatePtrMap CreateAllDelegates() const {
TfLiteDelegatePtrMap delegates_map;
for (const auto& delegate : delegates_list_) {
auto ptr = delegate->CreateTfLiteDelegate(params_);
// It's possible that a delegate of certain type won't be created as
// user-specified benchmark params tells not to.
if (ptr == nullptr) continue;
LOG(INFO) << delegate->GetName() << " delegate created.";
delegates_map.emplace(delegate->GetName(), std::move(ptr));
}
return delegates_map;
}
private:
// Contain delegate-related parameters that are initialized from command-line
// flags.
tflite::tools::ToolParams params_;
const tflite::tools::DelegateProviderList& delegates_list_;
};
TfLiteDelegatePtr CreateGPUDelegate(Settings* s) {
#if defined(__ANDROID__)
TfLiteGpuDelegateOptionsV2 gpu_opts = TfLiteGpuDelegateOptionsV2Default();
gpu_opts.inference_preference =
TFLITE_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED;
gpu_opts.inference_priority1 =
s->allow_fp16 ? TFLITE_GPU_INFERENCE_PRIORITY_MIN_LATENCY
: TFLITE_GPU_INFERENCE_PRIORITY_MAX_PRECISION;
return evaluation::CreateGPUDelegate(&gpu_opts);
#else
return evaluation::CreateGPUDelegate();
#endif
}
TfLiteDelegatePtrMap GetDelegates(Settings* s,
const DelegateProviders& delegate_providers) {
// TODO(b/169681115): deprecate delegate creation path based on "Settings" by
// mapping settings to DelegateProvider's parameters.
TfLiteDelegatePtrMap delegates;
if (s->gl_backend) {
auto delegate = CreateGPUDelegate(s);
if (!delegate) {
LOG(INFO) << "GPU acceleration is unsupported on this platform.";
} else {
delegates.emplace("GPU", std::move(delegate));
}
}
if (s->accel) {
StatefulNnApiDelegate::Options options;
options.allow_fp16 = s->allow_fp16;
auto delegate = evaluation::CreateNNAPIDelegate(options);
if (!delegate) {
LOG(INFO) << "NNAPI acceleration is unsupported on this platform.";
} else {
delegates.emplace("NNAPI", std::move(delegate));
}
}
if (s->hexagon_delegate) {
const std::string libhexagon_path("/data/local/tmp");
auto delegate =
evaluation::CreateHexagonDelegate(libhexagon_path, s->profiling);
if (!delegate) {
LOG(INFO) << "Hexagon acceleration is unsupported on this platform.";
} else {
delegates.emplace("Hexagon", std::move(delegate));
}
}
if (s->xnnpack_delegate) {
auto delegate = evaluation::CreateXNNPACKDelegate(s->number_of_threads);
if (!delegate) {
LOG(INFO) << "XNNPACK acceleration is unsupported on this platform.";
} else {
delegates.emplace("XNNPACK", std::move(delegate));
}
}
// Independent of above delegate creation options that are specific to this
// binary, we use delegate providers to create TFLite delegates. Delegate
// providers have been used in TFLite benchmark/evaluation tools and testing
// so that we have a single and more comprehensive set of command line
// arguments for delegate creation.
TfLiteDelegatePtrMap delegates_from_providers =
delegate_providers.CreateAllDelegates();
for (auto& name_and_delegate : delegates_from_providers) {
delegates.emplace("Delegate_Provider_" + name_and_delegate.first,
std::move(name_and_delegate.second));
}
return delegates;
}
// Takes a file name, and loads a list of labels from it, one per line, and
// returns a vector of the strings. It pads with empty strings so the length
// of the result is a multiple of 16, because our model expects that.
TfLiteStatus ReadLabelsFile(const string& file_name,
std::vector<string>* result,
size_t* found_label_count) {
std::ifstream file(file_name);
if (!file) {
LOG(ERROR) << "Labels file " << file_name << " not found";
return kTfLiteError;
}
result->clear();
string line;
while (std::getline(file, line)) {
result->push_back(line);
}
*found_label_count = result->size();
const int padding = 16;
while (result->size() % padding) {
result->emplace_back();
}
return kTfLiteOk;
}
void PrintProfilingInfo(const profiling::ProfileEvent* e,
uint32_t subgraph_index, uint32_t op_index,
TfLiteRegistration registration) {
// output something like
// time (ms) , Node xxx, OpCode xxx, symbolic name
// 5.352, Node 5, OpCode 4, DEPTHWISE_CONV_2D
LOG(INFO) << std::fixed << std::setw(10) << std::setprecision(3)
<< (e->end_timestamp_us - e->begin_timestamp_us) / 1000.0
<< ", Subgraph " << std::setw(3) << std::setprecision(3)
<< subgraph_index << ", Node " << std::setw(3)
<< std::setprecision(3) << op_index << ", OpCode " << std::setw(3)
<< std::setprecision(3) << registration.builtin_code << ", "
<< EnumNameBuiltinOperator(
static_cast<BuiltinOperator>(registration.builtin_code));
}
void RunInference(Settings* settings,
const DelegateProviders& delegate_providers) {
if (!settings->model_name.c_str()) {
LOG(ERROR) << "no model file name";
exit(-1);
}
std::unique_ptr<tflite::FlatBufferModel> model;
std::unique_ptr<tflite::Interpreter> interpreter;
model = tflite::FlatBufferModel::BuildFromFile(settings->model_name.c_str());
if (!model) {
LOG(ERROR) << "Failed to mmap model " << settings->model_name;
exit(-1);
}
settings->model = model.get();
LOG(INFO) << "Loaded model " << settings->model_name;
model->error_reporter();
LOG(INFO) << "resolved reporter";
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model, resolver)(&interpreter);
if (!interpreter) {
LOG(ERROR) << "Failed to construct interpreter";
exit(-1);
}
interpreter->SetAllowFp16PrecisionForFp32(settings->allow_fp16);
if (settings->verbose) {
LOG(INFO) << "tensors size: " << interpreter->tensors_size();
LOG(INFO) << "nodes size: " << interpreter->nodes_size();
LOG(INFO) << "inputs: " << interpreter->inputs().size();
LOG(INFO) << "input(0) name: " << interpreter->GetInputName(0);
int t_size = interpreter->tensors_size();
for (int i = 0; i < t_size; i++) {
if (interpreter->tensor(i)->name)
LOG(INFO) << i << ": " << interpreter->tensor(i)->name << ", "
<< interpreter->tensor(i)->bytes << ", "
<< interpreter->tensor(i)->type << ", "
<< interpreter->tensor(i)->params.scale << ", "
<< interpreter->tensor(i)->params.zero_point;
}
}
if (settings->number_of_threads != -1) {
interpreter->SetNumThreads(settings->number_of_threads);
}
int image_width = 224;
int image_height = 224;
int image_channels = 3;
std::vector<uint8_t> in = read_bmp(settings->input_bmp_name, &image_width,
&image_height, &image_channels, settings);
int input = interpreter->inputs()[0];
if (settings->verbose) LOG(INFO) << "input: " << input;
const std::vector<int> inputs = interpreter->inputs();
const std::vector<int> outputs = interpreter->outputs();
if (settings->verbose) {
LOG(INFO) << "number of inputs: " << inputs.size();
LOG(INFO) << "number of outputs: " << outputs.size();
}
auto delegates_ = GetDelegates(settings, delegate_providers);
for (const auto& delegate : delegates_) {
if (interpreter->ModifyGraphWithDelegate(delegate.second.get()) !=
kTfLiteOk) {
LOG(ERROR) << "Failed to apply " << delegate.first << " delegate.";
exit(-1);
} else {
LOG(INFO) << "Applied " << delegate.first << " delegate.";
}
}
if (interpreter->AllocateTensors() != kTfLiteOk) {
LOG(ERROR) << "Failed to allocate tensors!";
exit(-1);
}
if (settings->verbose) PrintInterpreterState(interpreter.get());
// get input dimension from the input tensor metadata
// assuming one input only
TfLiteIntArray* dims = interpreter->tensor(input)->dims;
int wanted_height = dims->data[1];
int wanted_width = dims->data[2];
int wanted_channels = dims->data[3];
settings->input_type = interpreter->tensor(input)->type;
switch (settings->input_type) {
case kTfLiteFloat32:
resize<float>(interpreter->typed_tensor<float>(input), in.data(),
image_height, image_width, image_channels, wanted_height,
wanted_width, wanted_channels, settings);
break;
case kTfLiteInt8:
resize<int8_t>(interpreter->typed_tensor<int8_t>(input), in.data(),
image_height, image_width, image_channels, wanted_height,
wanted_width, wanted_channels, settings);
break;
case kTfLiteUInt8:
resize<uint8_t>(interpreter->typed_tensor<uint8_t>(input), in.data(),
image_height, image_width, image_channels, wanted_height,
wanted_width, wanted_channels, settings);
break;
default:
LOG(ERROR) << "cannot handle input type "
<< interpreter->tensor(input)->type << " yet";
exit(-1);
}
auto profiler = absl::make_unique<profiling::Profiler>(
settings->max_profiling_buffer_entries);
interpreter->SetProfiler(profiler.get());
if (settings->profiling) profiler->StartProfiling();
if (settings->loop_count > 1) {
for (int i = 0; i < settings->number_of_warmup_runs; i++) {
if (interpreter->Invoke() != kTfLiteOk) {
LOG(ERROR) << "Failed to invoke tflite!";
exit(-1);
}
}
}
struct timeval start_time, stop_time;
gettimeofday(&start_time, nullptr);
for (int i = 0; i < settings->loop_count; i++) {
if (interpreter->Invoke() != kTfLiteOk) {
LOG(ERROR) << "Failed to invoke tflite!";
exit(-1);
}
}
gettimeofday(&stop_time, nullptr);
LOG(INFO) << "invoked";
LOG(INFO) << "average time: "
<< (get_us(stop_time) - get_us(start_time)) /
(settings->loop_count * 1000)
<< " ms";
if (settings->profiling) {
profiler->StopProfiling();
auto profile_events = profiler->GetProfileEvents();
for (int i = 0; i < profile_events.size(); i++) {
auto subgraph_index = profile_events[i]->extra_event_metadata;
auto op_index = profile_events[i]->event_metadata;
const auto subgraph = interpreter->subgraph(subgraph_index);
const auto node_and_registration =
subgraph->node_and_registration(op_index);
const TfLiteRegistration registration = node_and_registration->second;
PrintProfilingInfo(profile_events[i], subgraph_index, op_index,
registration);
}
}
const float threshold = 0.001f;
std::vector<std::pair<float, int>> top_results;
int output = interpreter->outputs()[0];
TfLiteIntArray* output_dims = interpreter->tensor(output)->dims;
// assume output dims to be something like (1, 1, ... ,size)
auto output_size = output_dims->data[output_dims->size - 1];
switch (interpreter->tensor(output)->type) {
case kTfLiteFloat32:
get_top_n<float>(interpreter->typed_output_tensor<float>(0), output_size,
settings->number_of_results, threshold, &top_results,
settings->input_type);
break;
case kTfLiteInt8:
get_top_n<int8_t>(interpreter->typed_output_tensor<int8_t>(0),
output_size, settings->number_of_results, threshold,
&top_results, settings->input_type);
break;
case kTfLiteUInt8:
get_top_n<uint8_t>(interpreter->typed_output_tensor<uint8_t>(0),
output_size, settings->number_of_results, threshold,
&top_results, settings->input_type);
break;
default:
LOG(ERROR) << "cannot handle output type "
<< interpreter->tensor(output)->type << " yet";
exit(-1);
}
std::vector<string> labels;
size_t label_count;
if (ReadLabelsFile(settings->labels_file_name, &labels, &label_count) !=
kTfLiteOk)
exit(-1);
for (const auto& result : top_results) {
const float confidence = result.first;
const int index = result.second;
LOG(INFO) << confidence << ": " << index << " " << labels[index];
}
}
void display_usage() {
LOG(INFO)
<< "label_image\n"
<< "--accelerated, -a: [0|1], use Android NNAPI or not\n"
<< "--allow_fp16, -f: [0|1], allow running fp32 models with fp16 or not\n"
<< "--count, -c: loop interpreter->Invoke() for certain times\n"
<< "--gl_backend, -g: [0|1]: use GL GPU Delegate on Android\n"
<< "--hexagon_delegate, -j: [0|1]: use Hexagon Delegate on Android\n"
<< "--input_mean, -b: input mean\n"
<< "--input_std, -s: input standard deviation\n"
<< "--image, -i: image_name.bmp\n"
<< "--labels, -l: labels for the model\n"
<< "--tflite_model, -m: model_name.tflite\n"
<< "--profiling, -p: [0|1], profiling or not\n"
<< "--num_results, -r: number of results to show\n"
<< "--threads, -t: number of threads\n"
<< "--verbose, -v: [0|1] print more information\n"
<< "--warmup_runs, -w: number of warmup runs\n"
<< "--xnnpack_delegate, -x [0:1]: xnnpack delegate\n";
}
int Main(int argc, char** argv) {
DelegateProviders delegate_providers;
bool parse_result = delegate_providers.InitFromCmdlineArgs(
&argc, const_cast<const char**>(argv));
if (!parse_result) {
return EXIT_FAILURE;
}
Settings s;
int c;
while (true) {
static struct option long_options[] = {
{"accelerated", required_argument, nullptr, 'a'},
{"allow_fp16", required_argument, nullptr, 'f'},
{"count", required_argument, nullptr, 'c'},
{"verbose", required_argument, nullptr, 'v'},
{"image", required_argument, nullptr, 'i'},
{"labels", required_argument, nullptr, 'l'},
{"tflite_model", required_argument, nullptr, 'm'},
{"profiling", required_argument, nullptr, 'p'},
{"threads", required_argument, nullptr, 't'},
{"input_mean", required_argument, nullptr, 'b'},
{"input_std", required_argument, nullptr, 's'},
{"num_results", required_argument, nullptr, 'r'},
{"max_profiling_buffer_entries", required_argument, nullptr, 'e'},
{"warmup_runs", required_argument, nullptr, 'w'},
{"gl_backend", required_argument, nullptr, 'g'},
{"hexagon_delegate", required_argument, nullptr, 'j'},
{"xnnpack_delegate", required_argument, nullptr, 'x'},
{nullptr, 0, nullptr, 0}};
/* getopt_long stores the option index here. */
int option_index = 0;
c = getopt_long(argc, argv,
"a:b:c:d:e:f:g:i:j:l:m:p:r:s:t:v:w:x:", long_options,
&option_index);
/* Detect the end of the options. */
if (c == -1) break;
switch (c) {
case 'a':
s.accel = strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'b':
s.input_mean = strtod(optarg, nullptr);
break;
case 'c':
s.loop_count =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'e':
s.max_profiling_buffer_entries =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'f':
s.allow_fp16 =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'g':
s.gl_backend =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'i':
s.input_bmp_name = optarg;
break;
case 'j':
s.hexagon_delegate = optarg;
break;
case 'l':
s.labels_file_name = optarg;
break;
case 'm':
s.model_name = optarg;
break;
case 'p':
s.profiling =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'r':
s.number_of_results =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 's':
s.input_std = strtod(optarg, nullptr);
break;
case 't':
s.number_of_threads = strtol( // NOLINT(runtime/deprecated_fn)
optarg, nullptr, 10);
break;
case 'v':
s.verbose =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'w':
s.number_of_warmup_runs =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'x':
s.xnnpack_delegate =
strtol(optarg, nullptr, 10); // NOLINT(runtime/deprecated_fn)
break;
case 'h':
case '?':
/* getopt_long already printed an error message. */
display_usage();
exit(-1);
default:
exit(-1);
}
}
RunInference(&s, delegate_providers);
return 0;
}
} // namespace label_image
} // namespace tflite
int main(int argc, char** argv) {
return tflite::label_image::Main(argc, argv);
}