This enables TFLite Micro to selectively include these setter functions in unit tests. The APIs used in creating the flatbuffer introduce new and delete symbols which can cause issues for libraries not fully building with --gc-sections in linker flags. PiperOrigin-RevId: 339324965 Change-Id: I720b8dab6d80a94a47b7c8c427067966e2c42943
243 lines
9.6 KiB
C++
243 lines
9.6 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/delegates/xnnpack/prelu_tester.h"
|
|
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <fp16.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/schema/schema_conversion_utils.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/version.h"
|
|
|
|
namespace tflite {
|
|
namespace xnnpack {
|
|
|
|
void PreluTester::Test(TfLiteDelegate* delegate) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto input_rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f),
|
|
std::ref(rng));
|
|
|
|
std::vector<char> buffer = CreateTfLiteModel();
|
|
const Model* model = GetModel(buffer.data());
|
|
|
|
std::unique_ptr<Interpreter> delegate_interpreter;
|
|
ASSERT_EQ(
|
|
InterpreterBuilder(
|
|
model,
|
|
::tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates())(
|
|
&delegate_interpreter),
|
|
kTfLiteOk);
|
|
std::unique_ptr<Interpreter> default_interpreter;
|
|
ASSERT_EQ(
|
|
InterpreterBuilder(
|
|
model,
|
|
::tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates())(
|
|
&default_interpreter),
|
|
kTfLiteOk);
|
|
|
|
ASSERT_TRUE(delegate_interpreter);
|
|
ASSERT_TRUE(default_interpreter);
|
|
|
|
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
|
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
|
|
|
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
|
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
|
|
|
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
|
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
|
|
|
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
|
|
|
float* default_input_data = default_interpreter->typed_tensor<float>(
|
|
default_interpreter->inputs()[0]);
|
|
std::generate(default_input_data,
|
|
default_input_data + ComputeSize(InputShape()),
|
|
std::ref(input_rng));
|
|
|
|
float* xnnpack_input_data = delegate_interpreter->typed_tensor<float>(
|
|
delegate_interpreter->inputs()[0]);
|
|
std::copy(default_input_data, default_input_data + ComputeSize(InputShape()),
|
|
xnnpack_input_data);
|
|
|
|
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
|
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
|
|
|
float* default_output_data = default_interpreter->typed_tensor<float>(
|
|
default_interpreter->outputs()[0]);
|
|
float* xnnpack_output_data = delegate_interpreter->typed_tensor<float>(
|
|
delegate_interpreter->outputs()[0]);
|
|
|
|
for (size_t i = 0; i < ComputeSize(OutputShape()); i++) {
|
|
ASSERT_EQ(default_output_data[i], xnnpack_output_data[i]);
|
|
}
|
|
}
|
|
|
|
std::vector<char> PreluTester::CreateTfLiteModel() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto slope_rng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.5f),
|
|
std::ref(rng));
|
|
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
std::vector<flatbuffers::Offset<OperatorCode>> operator_codes{
|
|
{CreateOperatorCode(builder, BuiltinOperator_PRELU)}};
|
|
if (FP16Weights()) {
|
|
operator_codes.emplace_back(
|
|
CreateOperatorCode(builder, BuiltinOperator_DEQUANTIZE));
|
|
} else if (SparseWeights()) {
|
|
operator_codes.emplace_back(
|
|
CreateOperatorCode(builder, BuiltinOperator_DENSIFY));
|
|
}
|
|
|
|
std::vector<flatbuffers::Offset<Buffer>> buffers{{
|
|
CreateBuffer(builder, builder.CreateVector({})),
|
|
}};
|
|
|
|
if (FP16Weights()) {
|
|
std::vector<uint16_t> slope_data(ComputeSize(SlopeShape()));
|
|
std::generate(slope_data.begin(), slope_data.end(),
|
|
std::bind(fp16_ieee_from_fp32_value, slope_rng));
|
|
|
|
buffers.push_back(CreateBuffer(
|
|
builder, builder.CreateVector(
|
|
reinterpret_cast<const uint8_t*>(slope_data.data()),
|
|
sizeof(uint16_t) * slope_data.size())));
|
|
} else {
|
|
std::vector<float> slope_data(ComputeSize(SlopeShape()));
|
|
std::generate(slope_data.begin(), slope_data.end(), slope_rng);
|
|
|
|
buffers.push_back(CreateBuffer(
|
|
builder, builder.CreateVector(
|
|
reinterpret_cast<const uint8_t*>(slope_data.data()),
|
|
sizeof(float) * slope_data.size())));
|
|
}
|
|
|
|
std::vector<flatbuffers::Offset<Tensor>> tensors;
|
|
std::vector<flatbuffers::Offset<Operator>> operators;
|
|
if (FP16Weights()) {
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(SlopeShape().data(), SlopeShape().size()),
|
|
TensorType_FLOAT16, /*buffer=*/1));
|
|
} else if (SparseWeights()) {
|
|
const int dims_count = SlopeShape().size();
|
|
std::vector<flatbuffers::Offset<DimensionMetadata>> dim_metadata(
|
|
dims_count);
|
|
std::vector<int> traversal_order(dims_count);
|
|
for (int i = 0; i < dims_count; i++) {
|
|
traversal_order[i] = i;
|
|
dim_metadata[i] = CreateDimensionMetadata(builder, DimensionType_DENSE,
|
|
SlopeShape()[i]);
|
|
}
|
|
const flatbuffers::Offset<SparsityParameters> sparsity_param =
|
|
CreateSparsityParameters(builder, builder.CreateVector(traversal_order),
|
|
0, builder.CreateVector(dim_metadata));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(SlopeShape().data(), SlopeShape().size()),
|
|
TensorType_FLOAT32, /*buffer=*/1, /*name=*/0, /*quantization=*/0,
|
|
/*is_variable=*/false, /*sparsity=*/sparsity_param));
|
|
}
|
|
if (FP16Weights()) {
|
|
const std::array<int32_t, 1> dequantize_inputs{{0}};
|
|
const std::array<int32_t, 1> dequantize_outputs{{2}};
|
|
operators.emplace_back(CreateOperator(
|
|
builder, /*opcode_index=*/1,
|
|
builder.CreateVector<int32_t>(dequantize_inputs.data(),
|
|
dequantize_inputs.size()),
|
|
builder.CreateVector<int32_t>(dequantize_outputs.data(),
|
|
dequantize_outputs.size())));
|
|
} else if (SparseWeights()) {
|
|
const std::array<int32_t, 1> densify_inputs{{0}};
|
|
const std::array<int32_t, 1> densify_outputs{{2}};
|
|
operators.emplace_back(
|
|
CreateOperator(builder, /*opcode_index=*/1,
|
|
builder.CreateVector<int32_t>(densify_inputs.data(),
|
|
densify_inputs.size()),
|
|
builder.CreateVector<int32_t>(densify_outputs.data(),
|
|
densify_outputs.size())));
|
|
}
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(InputShape().data(), InputShape().size()),
|
|
TensorType_FLOAT32));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(SlopeShape().data(), SlopeShape().size()),
|
|
TensorType_FLOAT32,
|
|
/*buffer=*/(FP16Weights() || SparseWeights()) ? 0 : 1));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(OutputShape().data(), OutputShape().size()),
|
|
TensorType_FLOAT32));
|
|
|
|
const std::array<int32_t, 2> op_inputs{
|
|
{static_cast<int>(tensors.size()) - 3,
|
|
static_cast<int>(tensors.size()) - 2}};
|
|
const std::array<int32_t, 1> op_outputs{
|
|
{static_cast<int>(tensors.size()) - 1}};
|
|
operators.emplace_back(CreateOperator(
|
|
builder, /*opcode_index=*/0,
|
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())));
|
|
|
|
const std::array<int32_t, 1> subgraph_inputs{
|
|
{static_cast<int32_t>(tensors.size() - 3)}};
|
|
const std::array<int32_t, 1> subgraph_outputs{
|
|
{static_cast<int32_t>(tensors.size()) - 1}};
|
|
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
|
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
|
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
|
subgraph_inputs.size()),
|
|
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
|
subgraph_outputs.size()),
|
|
builder.CreateVector(operators.data(), operators.size()));
|
|
|
|
flatbuffers::Offset<flatbuffers::String> description =
|
|
builder.CreateString("PReLU model");
|
|
|
|
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
|
builder, TFLITE_SCHEMA_VERSION,
|
|
builder.CreateVector(operator_codes.data(), operator_codes.size()),
|
|
builder.CreateVector(&subgraph, 1), description,
|
|
builder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
builder.Finish(model_buffer);
|
|
|
|
return std::vector<char>(builder.GetBufferPointer(),
|
|
builder.GetBufferPointer() + builder.GetSize());
|
|
}
|
|
|
|
int32_t PreluTester::ComputeSize(const std::vector<int32_t>& shape) {
|
|
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
|
std::multiplies<int32_t>());
|
|
}
|
|
|
|
} // namespace xnnpack
|
|
} // namespace tflite
|