STT-tensorflow/tensorflow/lite/delegates/xnnpack/mean_test.cc
Marat Dukhan 7929dbda3d Delegate MEAN operator without keep_dims attribute to XNNPACK
PiperOrigin-RevId: 338905074
Change-Id: I5dc0246595b7b7027284e521a5365284d3a145c7
2020-10-25 03:55:58 -07:00

502 lines
17 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include <functional>
#include <memory>
#include <random>
#include <gtest/gtest.h>
#include "tensorflow/lite/delegates/xnnpack/reduce_tester.h"
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
namespace tflite {
namespace xnnpack {
TEST(Mean, DISABLED_4DReduceBatchSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({0})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceBatchKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({0})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceHeightSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({1})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceHeightKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({1})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceWidthSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({2})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceWidthKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({2})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, 4DReduceHeightWidthSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({1, 2})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({2, 1})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, 4DReduceHeightWidthKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({1, 2})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({2, 1})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceChannelsSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({3})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_4DReduceChannelsKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({3})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_3DReduceBatchSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, width, channels})
.Axes({0})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_3DReduceBatchKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, width, channels})
.Axes({0})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_3DReduceWidthSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, width, channels})
.Axes({1})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_3DReduceWidthKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, width, channels})
.Axes({1})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_3DReduceChannelsSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, width, channels})
.Axes({2})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_3DReduceChannelsKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, width, channels})
.Axes({2})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_2DReduceBatchSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, channels})
.Axes({0})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_2DReduceBatchKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, channels})
.Axes({0})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_2DReduceChannelsSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, channels})
.Axes({1})
.KeepDims(false)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_2DReduceChannelsKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, channels})
.Axes({1})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_1DSqueezeDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
ReduceTester().InputShape({batch}).Axes({0}).KeepDims(false).Test(
BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, DISABLED_1DKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
ReduceTester().InputShape({batch}).Axes({0}).KeepDims(true).Test(
BuiltinOperator_MEAN, xnnpack_delegate.get());
}
TEST(Mean, MultiThreading) {
TfLiteXNNPackDelegateOptions delegate_options =
TfLiteXNNPackDelegateOptionsDefault();
delegate_options.num_threads = 2;
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto channels = shape_rng();
ReduceTester()
.InputShape({batch, height, width, channels})
.Axes({1, 2})
.KeepDims(true)
.Test(BuiltinOperator_MEAN, xnnpack_delegate.get());
}
} // namespace xnnpack
} // namespace tflite