170 lines
5.7 KiB
C++
170 lines
5.7 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/delegates/gpu/gl/kernels/mul.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "tensorflow/lite/delegates/gpu/common/convert.h"
|
|
#include "tensorflow/lite/delegates/gpu/common/status.h"
|
|
#include "tensorflow/lite/delegates/gpu/common/types.h"
|
|
|
|
namespace tflite {
|
|
namespace gpu {
|
|
namespace gl {
|
|
|
|
namespace {
|
|
|
|
bool IsApplyMaskSupported(const NodeShader::GenerationContext& ctx) {
|
|
if (ctx.input_shapes.size() != 2) return false;
|
|
|
|
// [H, W, C] x [H, W, 0][0]
|
|
if (ctx.input_shapes[0][1] == ctx.input_shapes[1][1] &&
|
|
ctx.input_shapes[0][2] == ctx.input_shapes[1][2] &&
|
|
ctx.input_shapes[1][3] == 1) {
|
|
return true;
|
|
}
|
|
|
|
// [H, W, C] x [H, W, C]
|
|
if (ctx.input_shapes[0] == ctx.input_shapes[1]) return true;
|
|
|
|
// [H, W, C] x [0, 0, C]
|
|
return ctx.input_shapes[1][1] == 1 && ctx.input_shapes[1][2] == 1 &&
|
|
ctx.input_shapes[0][3] == ctx.input_shapes[1][3];
|
|
}
|
|
|
|
absl::Status GenerateApplyMaskCode(const NodeShader::GenerationContext& ctx,
|
|
GeneratedCode* generated_code) {
|
|
std::string source = "value_0 = $input_data_0[gid.x, gid.y, gid.z]$ * ";
|
|
if (ctx.input_shapes[1][3] == 1) {
|
|
// [H, W, C] x [H, W, 0][0]
|
|
absl::StrAppend(&source, "$input_data_1[gid.x, gid.y, 0]$.x;");
|
|
} else if (ctx.input_shapes[0][1] == ctx.input_shapes[1][1] &&
|
|
ctx.input_shapes[0][2] == ctx.input_shapes[1][2]) {
|
|
// [H, W, C] x [H, W, C]
|
|
absl::StrAppend(&source, "$input_data_1[gid.x, gid.y, gid.z]$;");
|
|
} else {
|
|
// [H, W, C] x [0, 0, C]
|
|
absl::StrAppend(&source, "$input_data_1[0, 0, gid.z]$;");
|
|
}
|
|
|
|
*generated_code = {
|
|
/*parameters=*/{},
|
|
/*objects=*/{},
|
|
/*shared_variables=*/{},
|
|
/*workload=*/uint3(),
|
|
/*workgroup=*/uint3(),
|
|
/*source_code=*/std::move(source),
|
|
/*input=*/IOStructure::ONLY_DEFINITIONS,
|
|
/*output=*/IOStructure::AUTO,
|
|
};
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status GenerateMultiplyScalarCode(
|
|
const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) {
|
|
const auto& attr = absl::any_cast<const ElementwiseAttributes&>(ctx.op_attr);
|
|
|
|
if (absl::holds_alternative<float>(attr.param)) {
|
|
*generated_code = {
|
|
/*parameters=*/{{"scalar", absl::get<float>(attr.param)}},
|
|
/*objects=*/{},
|
|
/*shared_variables=*/{},
|
|
/*workload=*/uint3(),
|
|
/*workgroup=*/uint3(),
|
|
/*source_code=*/"value_0 *= $scalar$;",
|
|
/*input=*/IOStructure::AUTO,
|
|
/*output=*/IOStructure::AUTO,
|
|
};
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
if (absl::holds_alternative<Tensor<Linear, DataType::FLOAT32>>(attr.param)) {
|
|
*generated_code = {
|
|
/*parameters=*/{},
|
|
/*objects=*/
|
|
{{"mul_buffer",
|
|
MakeReadonlyObject(
|
|
absl::get<Tensor<Linear, DataType::FLOAT32>>(attr.param).data)}},
|
|
/*shared_variables=*/{},
|
|
// Declare workload explicitly because shader depends on gid.z.
|
|
/*workload=*/
|
|
uint3(static_cast<int>(ctx.input_shapes[0][2]),
|
|
static_cast<int>(ctx.input_shapes[0][1]),
|
|
DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)),
|
|
/*workgroup=*/uint3(),
|
|
/*source_code=*/"value_0 *= $mul_buffer[gid.z]$;",
|
|
/*input=*/IOStructure::AUTO,
|
|
/*output=*/IOStructure::AUTO,
|
|
};
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
if (absl::holds_alternative<Tensor<HWC, DataType::FLOAT32>>(attr.param)) {
|
|
*generated_code = {
|
|
/*parameters=*/{},
|
|
/*objects=*/
|
|
{{"hwc_buffer",
|
|
MakeReadonlyObject(
|
|
uint3(static_cast<int>(ctx.input_shapes[0][2]),
|
|
static_cast<int>(ctx.input_shapes[0][1]),
|
|
DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)),
|
|
ConvertToPHWC4(
|
|
absl::get<Tensor<HWC, DataType::FLOAT32>>(attr.param)))}},
|
|
/*shared_variables=*/{},
|
|
// Declare workload explicitly because shader depends on gid.z.
|
|
/*workload=*/
|
|
uint3(static_cast<int>(ctx.input_shapes[0][2]),
|
|
static_cast<int>(ctx.input_shapes[0][1]),
|
|
DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)),
|
|
/*workgroup=*/uint3(),
|
|
/*source_code=*/"value_0 *= $hwc_buffer[gid.x, gid.y, gid.z]$;",
|
|
/*input=*/IOStructure::AUTO,
|
|
/*output=*/IOStructure::AUTO,
|
|
};
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
return absl::InvalidArgumentError("Unsupported Multiplication case.");
|
|
}
|
|
|
|
class Multiply : public NodeShader {
|
|
public:
|
|
absl::Status GenerateCode(const GenerationContext& ctx,
|
|
GeneratedCode* generated_code) const final {
|
|
if (IsApplyMaskSupported(ctx)) {
|
|
return GenerateApplyMaskCode(ctx, generated_code);
|
|
} else {
|
|
return GenerateMultiplyScalarCode(ctx, generated_code);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<NodeShader> NewMultiplyNodeShader() {
|
|
return absl::make_unique<Multiply>();
|
|
}
|
|
|
|
} // namespace gl
|
|
} // namespace gpu
|
|
} // namespace tflite
|