STT-tensorflow/tensorflow/lite/delegates/flex/util_test.cc
Jaesung Chung f954b2770d Add uint64 tensor support in TFLite
Even though we do not support uint64 op kernels on mobile, it is inevitable to
support uint64 tensors in order to enable TF uint64 ops via flex delegate.

This CL enables the uint64 tensor type in MLIR converter only.

PiperOrigin-RevId: 342939673
Change-Id: I24f422040f82cad7affce4b921361f79e8a51730
2020-11-17 14:01:21 -08:00

151 lines
5.2 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/flex/util.h"
#include <cstdarg>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/string_type.h"
#include "tensorflow/lite/testing/util.h"
namespace tflite {
namespace flex {
namespace {
using tensorflow::DT_FLOAT;
using tensorflow::DT_INT32;
using tensorflow::Tensor;
using ::testing::ElementsAre;
struct TestContext : public TfLiteContext {
string error;
std::vector<int> new_size;
};
void ReportError(TfLiteContext* context, const char* format, ...) {
TestContext* c = static_cast<TestContext*>(context);
const size_t kBufferSize = 1024;
char temp_buffer[kBufferSize];
va_list args;
va_start(args, format);
vsnprintf(temp_buffer, kBufferSize, format, args);
va_end(args);
c->error = temp_buffer;
}
TfLiteStatus ResizeTensor(TfLiteContext* context, TfLiteTensor* tensor,
TfLiteIntArray* new_size) {
TestContext* c = static_cast<TestContext*>(context);
c->new_size.clear();
for (int i = 0; i < new_size->size; ++i) {
c->new_size.push_back(new_size->data[i]);
}
TfLiteIntArrayFree(new_size);
return kTfLiteOk;
}
TEST(UtilTest, ConvertStatus) {
TestContext context;
context.ReportError = ReportError;
EXPECT_EQ(ConvertStatus(&context, tensorflow::errors::Internal("Some Error")),
kTfLiteError);
EXPECT_EQ(context.error, "Some Error");
context.error.clear();
EXPECT_EQ(ConvertStatus(&context, tensorflow::Status()), kTfLiteOk);
EXPECT_TRUE(context.error.empty());
}
TEST(UtilTest, CopyShapeAndType) {
TestContext context;
context.ReportError = ReportError;
context.ResizeTensor = ResizeTensor;
TfLiteTensor dst;
EXPECT_EQ(CopyShapeAndType(&context, Tensor(), &dst), kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(0));
EXPECT_EQ(dst.type, kTfLiteFloat32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_FLOAT, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteFloat32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_INT32, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteInt32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_FLOAT, {1LL << 44, 2}), &dst),
kTfLiteError);
EXPECT_EQ(context.error,
"Dimension value in TensorFlow shape is larger than supported by "
"TF Lite");
EXPECT_EQ(
CopyShapeAndType(&context, Tensor(tensorflow::DT_HALF, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteFloat16);
}
TEST(UtilTest, TypeConversionsFromTFLite) {
EXPECT_EQ(TF_FLOAT, GetTensorFlowDataType(kTfLiteNoType));
EXPECT_EQ(TF_FLOAT, GetTensorFlowDataType(kTfLiteFloat32));
EXPECT_EQ(TF_HALF, GetTensorFlowDataType(kTfLiteFloat16));
EXPECT_EQ(TF_DOUBLE, GetTensorFlowDataType(kTfLiteFloat64));
EXPECT_EQ(TF_INT16, GetTensorFlowDataType(kTfLiteInt16));
EXPECT_EQ(TF_INT32, GetTensorFlowDataType(kTfLiteInt32));
EXPECT_EQ(TF_UINT8, GetTensorFlowDataType(kTfLiteUInt8));
EXPECT_EQ(TF_INT64, GetTensorFlowDataType(kTfLiteInt64));
EXPECT_EQ(TF_UINT64, GetTensorFlowDataType(kTfLiteUInt64));
EXPECT_EQ(TF_COMPLEX64, GetTensorFlowDataType(kTfLiteComplex64));
EXPECT_EQ(TF_COMPLEX128, GetTensorFlowDataType(kTfLiteComplex128));
EXPECT_EQ(TF_STRING, GetTensorFlowDataType(kTfLiteString));
EXPECT_EQ(TF_BOOL, GetTensorFlowDataType(kTfLiteBool));
}
TEST(UtilTest, TypeConversionsFromTensorFlow) {
EXPECT_EQ(kTfLiteFloat16, GetTensorFlowLiteType(TF_HALF));
EXPECT_EQ(kTfLiteFloat32, GetTensorFlowLiteType(TF_FLOAT));
EXPECT_EQ(kTfLiteFloat64, GetTensorFlowLiteType(TF_DOUBLE));
EXPECT_EQ(kTfLiteInt16, GetTensorFlowLiteType(TF_INT16));
EXPECT_EQ(kTfLiteInt32, GetTensorFlowLiteType(TF_INT32));
EXPECT_EQ(kTfLiteUInt8, GetTensorFlowLiteType(TF_UINT8));
EXPECT_EQ(kTfLiteInt64, GetTensorFlowLiteType(TF_INT64));
EXPECT_EQ(kTfLiteUInt64, GetTensorFlowLiteType(TF_UINT64));
EXPECT_EQ(kTfLiteComplex64, GetTensorFlowLiteType(TF_COMPLEX64));
EXPECT_EQ(kTfLiteComplex128, GetTensorFlowLiteType(TF_COMPLEX128));
EXPECT_EQ(kTfLiteString, GetTensorFlowLiteType(TF_STRING));
EXPECT_EQ(kTfLiteBool, GetTensorFlowLiteType(TF_BOOL));
EXPECT_EQ(kTfLiteNoType, GetTensorFlowLiteType(TF_RESOURCE));
EXPECT_EQ(kTfLiteNoType, GetTensorFlowLiteType(TF_VARIANT));
}
} // namespace
} // namespace flex
} // namespace tflite
int main(int argc, char** argv) {
::tflite::LogToStderr();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}