Adds a basic training script for a simple audio model to our examples. See third_party/docs_src/tutorials/audio_recognition.md for full documentation PiperOrigin-RevId: 165025732
128 lines
5.2 KiB
C++
128 lines
5.2 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/examples/speech_commands/recognize_commands.h"
|
|
|
|
namespace tensorflow {
|
|
|
|
RecognizeCommands::RecognizeCommands(const std::vector<string>& labels,
|
|
int32 average_window_duration_ms,
|
|
float detection_threshold,
|
|
int32 suppression_ms, int32 minimum_count)
|
|
: labels_(labels),
|
|
average_window_duration_ms_(average_window_duration_ms),
|
|
detection_threshold_(detection_threshold),
|
|
suppression_ms_(suppression_ms),
|
|
minimum_count_(minimum_count) {
|
|
labels_count_ = labels.size();
|
|
previous_top_label_ = "_silence_";
|
|
previous_top_label_time_ = std::numeric_limits<int64>::min();
|
|
}
|
|
|
|
Status RecognizeCommands::ProcessLatestResults(const Tensor& latest_results,
|
|
const int64 current_time_ms,
|
|
string* found_command,
|
|
float* score,
|
|
bool* is_new_command) {
|
|
if (latest_results.NumElements() != labels_count_) {
|
|
return errors::InvalidArgument(
|
|
"The results for recognition should contain ", labels_count_,
|
|
" elements, but there are ", latest_results.NumElements());
|
|
}
|
|
|
|
if ((!previous_results_.empty()) &&
|
|
(current_time_ms < previous_results_.front().first)) {
|
|
return errors::InvalidArgument(
|
|
"Results must be fed in increasing time order, but received a "
|
|
"timestamp of ",
|
|
current_time_ms, " that was earlier than the previous one of ",
|
|
previous_results_.front().first);
|
|
}
|
|
|
|
// Add the latest results to the head of the queue.
|
|
previous_results_.push_back({current_time_ms, latest_results});
|
|
|
|
// Prune any earlier results that are too old for the averaging window.
|
|
const int64 time_limit = current_time_ms - average_window_duration_ms_;
|
|
while (previous_results_.front().first < time_limit) {
|
|
previous_results_.pop_front();
|
|
}
|
|
|
|
// If there are too few results, assume the result will be unreliable and
|
|
// bail.
|
|
const int64 how_many_results = previous_results_.size();
|
|
const int64 earliest_time = previous_results_.front().first;
|
|
const int64 samples_duration = current_time_ms - earliest_time;
|
|
if ((how_many_results < minimum_count_) ||
|
|
(samples_duration < (average_window_duration_ms_ / 4))) {
|
|
*found_command = previous_top_label_;
|
|
*score = 0.0f;
|
|
*is_new_command = false;
|
|
return Status::OK();
|
|
}
|
|
|
|
// Calculate the average score across all the results in the window.
|
|
std::vector<float> average_scores(labels_count_);
|
|
for (const auto& previous_result : previous_results_) {
|
|
const Tensor& scores_tensor = previous_result.second;
|
|
auto scores_flat = scores_tensor.flat<float>();
|
|
for (int i = 0; i < scores_flat.size(); ++i) {
|
|
average_scores[i] += scores_flat(i) / how_many_results;
|
|
}
|
|
}
|
|
|
|
// Sort the averaged results in descending score order.
|
|
std::vector<std::pair<int, float>> sorted_average_scores;
|
|
sorted_average_scores.reserve(labels_count_);
|
|
for (int i = 0; i < labels_count_; ++i) {
|
|
sorted_average_scores.push_back(
|
|
std::pair<int, float>({i, average_scores[i]}));
|
|
}
|
|
std::sort(sorted_average_scores.begin(), sorted_average_scores.end(),
|
|
[](const std::pair<int, float>& left,
|
|
const std::pair<int, float>& right) {
|
|
return left.second > right.second;
|
|
});
|
|
|
|
// See if the latest top score is enough to trigger a detection.
|
|
const int current_top_index = sorted_average_scores[0].first;
|
|
const string current_top_label = labels_[current_top_index];
|
|
const float current_top_score = sorted_average_scores[0].second;
|
|
// If we've recently had another label trigger, assume one that occurs too
|
|
// soon afterwards is a bad result.
|
|
int64 time_since_last_top;
|
|
if ((previous_top_label_ == "_silence_") ||
|
|
(previous_top_label_time_ == std::numeric_limits<int64>::min())) {
|
|
time_since_last_top = std::numeric_limits<int64>::max();
|
|
} else {
|
|
time_since_last_top = current_time_ms - previous_top_label_time_;
|
|
}
|
|
if ((current_top_score > detection_threshold_) &&
|
|
(current_top_label != previous_top_label_) &&
|
|
(time_since_last_top > suppression_ms_)) {
|
|
previous_top_label_ = current_top_label;
|
|
previous_top_label_time_ = current_time_ms;
|
|
*is_new_command = true;
|
|
} else {
|
|
*is_new_command = false;
|
|
}
|
|
*found_command = current_top_label;
|
|
*score = current_top_score;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
} // namespace tensorflow
|